A novel pilot bioreactor for scaling up biomass and bioactive compounds on Gynura procumbens adventitious root culture

https://doi.org/10.22146/ijbiotech.78420

Dannis Yuda Kusuma(1), Alfinda Novi Kristanti(2), Yosephine Sri Wulan Manuhara(3*)

(1) Department of Biology, Faculty Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(2) Department of Chemistry, Faculty Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
(3) Department of Biology, Faculty Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Chemistry, Faculty Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
(*) Corresponding Author

Abstract


Bioreactors for adventitious root culture have been developed to obtain biomass and plant bioactive compounds in large quantities. These technologies provide a great opportunity to produce biomass and bioactive compounds more quickly from Gynura procumbens compared to conventional plant cultivation systems. In previous studies, biomass and bioactive compounds of G. procumbens adventitious roots were successfully increased using a small‐scale bioreactor. In this study, a pilot bioreactor the capacity of 19 L polycarbonate gallon was successfully developed. This bioreactor can be sterilized under the pressure of 0.18 MPa for approximately 60 min. While the bioreactor could not be sterilized when the pressure was less than 0.18 MPa damage may have occurred to the bioreactor vessel at pressures exceeding 0.18 MPa. The results of the chemical grade test as root culture media showed that MS‐Tek provided an optimal root biomass compared to MS‐PA after a 35‐day of the culture period. In addition, the productivity of the total phenolics and flavonoids of adventitious root in MS‐PA was higher than in MS‐Tek. This novel pilot bioreactor is suitable for G. procumbens adventitious root culture, and the technical‐grade chemicals are suitable for improving root biomass production.


Keywords


Adventitious root; Bioactive compound; Chemical grade; G. procumbens; Pilot bioreactor



References

An J, Kim PB, Park HB, Kim S, Park HJ, Lee CW, Lee BD, Kim NY, Hwang JE. 2021. Effects of different growth media on in vitro seedling development of an endangered orchid species Sedirea japonica. Plants 10(6):1193. doi:10.3390/plants10061193.

Baque A, Murthy HN, Paek KY. 2014. Adventitious root culture of Morinda citrifolia in bioreactors for production of bioactive compounds. Prod. Biomass Bioact. Compd. Using Bioreact. Technol. 9789401792:185–222. doi:10.1007/978-94-017- 9223-3_9.

Baque MA, Shiragi MHK, Moh SH, Lee EJ, Paek KY. 2013. Production of biomass and bioactive compounds by adventitious root suspension cultures of Morinda citrifolia (L.) in a liquid-phase airlift balloon-type bioreactor. Vitr. Cell. Dev. Biol. - Plant 49(6):737–749. doi:10.1007/s11627-013-9555-3.

Deng B, Li Y, Xu D, Ye Q, Liu G. 2019. Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Sci. Rep. 9(1):2370. doi:10.1038/s41598- 019-38837-8.

Dhanalakshmi S, Stephan R. 2016. International Journal of Advanced Research in Biological Sciences Low cost micropropagation package for Banana (Musa paradisiaca L.). Int. J. Adv. Res. Biol. Sci 3(5):240– 253.

Faizah H, Tanjung M, Purnobasuki H, Manuhara YSW. 2018. Biomass and flavonoid production of Gynura procumbens (L.). merr adventitious root culture in baloon-type bubble-bioreactor influenced by elicitation. Asian J. Plant Sci. 17(2):107–119. doi:10.3923/AJPS.2018.107.119.

Ghimire BK, Lee JG, Yoo JH, Kim JK, Yu CY. 2017. The influence of light-emitting diodes (LEDs) on the growth, antioxidant activities, and metabolites in adventitious Root of Panax ginseng C.A. Meyer. Singapore: Springer Singapore. doi:10.1007/978-981-10- 5807-3_11.

Hasanah U, R ES, Sumardi. 2014. Pemanfataan Pupuk Daun, Air Kelapa dan Bubur Pisang sebagai Komponen Medium Pertumbuhan Plantlet Anggrek Dendrobium kelemense. J. Biosaintifika Vol 6(2):52–60.

Kaewseejan N, Sutthikhum V, Siriamornpun S. 2015. Potential of Gynura procumbens leaves as source of flavonoid-enriched fractions with enhanced antioxidant capacity. J. Funct. Foods 12:120–128. doi:10.1016/j.jff.2014.11.001.

Kim, Yun-Soo and Hahn, Eun-Joo and Paek K. 2004. Effects of Various Bioreactors on Growth and Ginsenoside Accumulation in Ginseng Adventitious Root Cultures(Panax ginseng C.A. Meyer). J. Plant Biotechnol. 31(3):249–253. doi:10.5010/jpb.2004.31.3.249.

Kishor PB, Hima Kumari P, Sunita MS, Sreenivasulu N. 2015. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 6:544. doi:10.3389/fpls.2015.00544.

Krishnan V, Ahmad S, Mahmood M. 2015. Antioxidant Potential in Different Parts and Callus of Gynura procumbens and Different Parts of Gynura bicolor. Biomed Res. Int. 2015:1–7. doi:10.1155/2015/147909.

Kusuma DY, Kristanti AN, Wibowo AT, Chin TB, Manuhara YSW. 2021. Aeration Volume and Inoculum Density Using in Bioreactor to Optimized Biomass Production and Secondary Metabolites in Gynura procumbens ( Lour .) Merr. Adventitious Roots Culture. Syst. Rev. Pharm. 12(4):102–112. doi:10.31838/SRP.2021.4.41.

Kusuma DY, Kristanti AN, Wulan Manuhara YS. 2017. Effect of sucrose and immersion frequency on production of adventitious roots and secondary metabolites of Gynura procumbens (Lour.) merr in temporary immersion bioreactors. Asian J. Plant Sci. 16(1):24– 36. doi:10.3923/ajps.2017.24.36.

Lee JG. 2009. Factors Involved in Masspropagation of Ginseng (Panax ginseng C. A. Meyer) using Bioreactor System. J. Korean Soc. Appl. Biol. Chem. 52(5):466–471. doi:10.3839/jksabc.2009.080.

Lulu T, Park SY, Ibrahim R, Paek KY. 2015. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system. J. Biosci. Bioeng. 119(6):712–717. doi:10.1016/j.jbiosc.2014.11.010.

Mai NTP, Le TVA, Nguyen BC, Le NHT, Do QM. 2022. Carrot hairy roots (Daucus carota L.) characterisation and optimisation for high β-carotene extraction. Indones. J. Biotechnol. 27(4):171–178. doi:10.22146/ijbiotech.73476.

Manuhara YSW, Kusuma DY, Sari RLK, Kristanti AN. 2017. Biomass Production of Gynura procumbens Adventitious Roots in Different Type of Liquid Culture. Biosaintifika J. Biol. Biol. Educ. 9(3):523. doi:10.15294/biosaintifika.v9i3.9670.

Manuhara YSW, Merindasya M, Muthoharoh L, Hartatie H P, Novi Krist A. 2020. Biomass and Flavonoid Production of Gynura procumbens Adventitious Roots Influenced by MS Salt Strength and Nitrogen Source in a Balloon-type Bubble Bioreactor. Asian J. Crop Sci. 12(3):162–169. doi:10.3923/ajcs.2020.162.169.

Murthy HN, Dalawai D, Bhat MA, Dandin VS, Paek KY, Park SY. 2019. Biotechnological Production of Useful Phytochemicals from Adventitious Root Cultures. Cham: Springer. doi:10.1007/978-3-030- 11253-0_19-1.

Murthy HN, Dandin VS, Paek KY. 2016. Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem. Rev. 15(1):129–145. doi:10.1007/s11101-014-9391-z.

Murthy HN, Kim YS, Jeong CS, Kim SJ, Zhong JJ, Paek KY. 2014. Production of ginsenosides from adventitious root cultures of Panax ginseng, volume 9789401792. Dordrecht: Springer Netherlands. doi:10.1007/978-94-017-9223-3_24.

Murthy HN, Paek KY. 2014. Food ingredients from plant cell, tissue and organ cultures: Bio-safety and efficacy evaluations, volume 9789401792. Dordrecht: Springer Netherlands. doi:10.1007/978-94- 017-9223-3_25.

Murthy HN, Park SY, Lee EJ, Paek KY. 2015. Biosafety and toxicological evaluation of tissuecultured Echinacea purpurea adventitious roots. Korean J. Hortic. Sci. Technol. 33(1):124–132. doi:10.7235/hort.2015.14103.

Muthoharoh L, Faizah H, Hartatie Hardjo P, Novi Kristanti A, Sri Wulan Manuhara Y. 2019. Effect of Carbon Source on Biomass and Flavonoid Content of Gynura procumbens (Lour.) Merr. Adventitious Root in Liquid Culture. Biosci. Biotechnol. Res. Asia 16(1):121–127. doi:10.13005/bbra/2729.

Paek KY, Hahn EJ, Son SH. 2001. Application of bioreactors for large-scale micropropagation systems of plants. Vitr. Cell. Dev. Biol. - Plant 37(2):149–157. doi:10.1007/s11627-001-0027-9.

Park SY, Lee JG, Cho HS, Seong ES, Kim HY, Yu CY, Kim JK. 2013. Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (Panax ginseng C. A. Mayer). Plant Omics 6(3):224–230.

Prakash S, Hoque M, Brinks T. 2004. Culture Media and Containers. In: Proc. a Tech. Meet. Low cost options tissue Cult. Technol. Dev. Ctries., August 2002. p. 29– 40.

Rahmat E, Okello D, Kim H, Lee J, Chung Y, Komakech R, Kang Y. 2021. Scale-up production of Rehmannia glutinosa adventitious root biomass in bioreactors and improvement of its acteoside content by elicitation. Ind. Crops Prod. 172:114059. doi:10.1016/j.indcrop.2021.114059.

Saiman MZ, Mustafa NR, Schulte AE, Verpoorte R, Choi YH. 2012. Induction, characterization, and NMR-based metabolic profiling of adventitious root cultures from leaf explants of Gynura procumbens. Plant Cell. Tissue Organ Cult. 109(3):465–475. doi:10.1007/s11240-011-0111-8.

Samuoliene G, Brazaityte A, Vaštakaite V. 2017. Lightemitting diodes (LEDs) for improved nutritional quality. Singapore: Springer Singapore. doi:10.1007/978- 981-10-5807-3_8.

Sastri VR. 2022. 4 - Material Requirements for Plastics Used in Medical Devices. Plastics Design Library. William Andrew Publishing, third edition edition. doi:10.1016/B978-0-323-85126-8.00008-4.

Singh J, Kaushik N, Biswas S. 2014. Bioreactors – Technology & Design Analysis. SCITECH J. 01(06):28– 36.

Sugiharto, Kusuma DY, Bhakti IN, Muhsyi AH, Sri Y, Manuhara W. 2021. Comparison of antioxidant potential of Gynura procumbens adventitious root in vitro culture and ex vitro. Ecol. Environ. Conserv. 27(4):1880–1884.

Sugiharto, Winarni D, Islamatasya U, Muhsyi AH, Merpati AB, Manuhara YSW. 2022. The Protective Effect of Gynura procumbens Adventitious Root against Lead Acetate Toxicity in Mice. J. Trop. Biodivers. Biotechnol. 7(2):69453. doi:10.22146/jtbb.69453.



DOI: https://doi.org/10.22146/ijbiotech.78420

Article Metrics

Abstract views : 1407 | views : 465 | views : 642

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.