Performance of salt‐bridge microbial fuel cell (SB‐MFC) with various microorganism cultures on the generation of electricity from tofu wastewater
Dani Permana(1*), Herlian Eriska Putra(2), Oman Rohman(3), Mahyar Ependi(4), Djaenudin Djaenudin(5)
(1) Research Center for Genetic Engineering, The National Research and Innovation Agency of the Republic of Indonesia (Badan Riset dan Inovasi Nasional (BRIN)), Kawasan Sains dan Teknologi (KST) Dr. Ir. H. Soekarno, Jalan Raya Jakarta‐Bogor, KM. 46, Cibinong, Bogor 16911, Indonesia
(2) Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Jalan Cisitu, Bandung 40135, Indonesia
(3) Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Jalan Cisitu, Bandung 40135, Indonesia
(4) Research Center for Data and Information Sciences, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Jalan Cisitu‐Sangkuriang, Bandung 40135, West Java, Indonesia
(5) Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Jalan Cisitu, Bandung 40135, Indonesia
(*) Corresponding Author
Abstract
A suitable wastewater treatment system is required due to the high organic compound content in tofu wastewater, which can harm the environment. Biological treatment methods are effective for treating tofu wastewater due to its characteristics. Microbial fuel cells (MFCs) represent one such biological treatment option, effectively removing organic contaminants while generating low‐power electricity through bioenergetic reactions. In MFCs, microorganisms are used as biocatalysts to degrade the organic compounds present in wastewater. This study aimed to assess the efficacy of Salt‐bridge microbial fuel cells (SB‐MFC) using various acclimatized microbe cultures for reducing organic compounds and generating energy from tofu wastewater. Tofu wastewater was sterilized prior to introduction into the reactor. Additional microbes, including the native microbe consortium from tofu wastewater, Escherichia coli, Saccharomycopsis fibuligera, and a mixed culture of E. coli and S. fibuligera, were then introduced as biocatalysts. Carbon electrodes were utilized as both the anode and cathode. The results indicate that the mixed culture of E. coli and S. fibuligera significantly reduced COD and BOD5 levels, with removal rates of 82.74% and 76.53%, respectively, after 48 h. Furthermore, the culture generated a voltage of 676 mV, a current of 2.53 mA, a power density of 428 mWatt/m2, and 4.789×10‐2 kWh of energy. This study contributes to the advancement of SB‐MFC by utilizing wastewater and a combination of bacteria and yeast as biocatalysts.
Keywords
Full Text:
PDFReferences
Ahmed S, Rozaik E, Abdel-Halim H. 2016. Performance of single-chamber microbial fuel cells using different carbohydrate-rich wastewaters and different inocula. Polish J. Environ. Stud. 25(2):503–510. doi:10.15244/pjoes/61115.
Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, Liu H. 2019. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Fact. 18(1):1–14. doi:10.1186/s12934-019-1087-z.
Christwardana M, Hadiyanto H, Motto SA, Sudarno S, Haryani K. 2020. Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass and Bioenergy 139:105617. doi:10.1016/j.biombioe.2020.105617.
Christwardana M, Handayani AS, Yudianti R, Joelianingsih. 2021. Cellulose – Carrageenan coated carbon felt as potential anode structure for yeast microbial fuel cell. Int. J. Hydrogen Energy 46(8):6076–6086. doi:10.1016/j.ijhydene.2020.05.265.
Darwin, Purwanto S, Rinaldi R. 2019. Removal of organic pollutants from tofu-processing wastewater through anaerobic treatment process with short hydraulic retention time. Environ. Res. Eng. Manag. 75(1):34–42. doi:10.5755/j01.erem.75.1.21532.
Gude VG. 2016. Wastewater treatment in microbial fuel cells - An overview. J. Clean. Prod. 122:287–307. doi:10.1016/j.jclepro.2016.02.022.
Hadiyanto H, Christwardana M, Minasheila T, Hans Wijaya Y. 2020. Effects of yeast concentration and microalgal species on improving the performance of microalgal-microbial fuel cells (MMFCs). Int. Energy J. 20(3):337–344.
Hadiyanto H, Christwardana M, Pratiwi WZ, Purwanto P, Sudarno S, Haryani K, Hoang AT. 2022. Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production. Chemosphere 287:132275. doi:10.1016/j.chemosphere.2021.132275.
Islam MA, Ethiraj B, Cheng CK, Yousuf A, Thiruvenkadam S, Prasad R, Rahman Khan MM. 2018. Enhanced current generation using mutualistic interaction of yeast-bacterial coculture in dual chamber microbial fuel cell. Ind. Eng. Chem. Res. 57(3):813– 821. doi:10.1021/acs.iecr.7b01855.
Li X, Liu G, Ma F, Sun S, Zhou S, Ardhi REA, Lee JK, Yao H. 2018. Enhanced power generation in a singlechamber dynamic membrane microbial fuel cell using a nonstructural air-breathing activated carbon fiber felt cathode. Energy Convers. Manag. 172:98–104. doi:10.1016/j.enconman.2018.07.011.
Mohd Zaini Makhtar M, Tajarudin HA, Samsudin MDM, Vadivelu VM, Shoparwe NF, Zainuddin NI. 2021. Membrane-less microbial fuel cell: Monte Carlo simulation and sensitivity analysis for COD removal in dewatered sludge. AIP Adv. 11(6):065016. doi:10.1063/5.0039014.
Mukherjee A, Zaveri P, Patel R, Shah MT, Munshi NS. 2021. Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation. J. Environ. Manage. 298:113546. doi:10.1016/j.jenvman.2021.113546.
Naseer MN, Zaidi AA, Khan H, Kumar S, bin Owais MT, Jaafar J, Suhaimin NS, Wahab YA, Dutta K, Asif M, Hatta SFM, Uzair M. 2021. Mapping the field of microbial fuel cell: A quantitative literature review (1970–2020). Energy Reports 7:4126–4138. doi:10.1016/j.egyr.2021.06.082.
Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D. 2016. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 168:706–723. doi:10.1016/j.apenergy.2016.01.056.
Paucar NE, Sato C. 2021. Microbial fuel cell for energy production, nutrient removal and recovery from wastewater: A review. Processes 9(8):1318. doi:10.3390/pr9081318.
Permana D, Djaenudin. 2019. Performance of single chamber microbial fuel cell (SCMFC) for biological treatment of tofu wastewater. In: IOP Conf. Ser. Earth Environ. Sci., volume 277. p. 012008. doi:10.1088/1755-1315/277/1/012008.
Putra HE, Permana D, Djaenudin. 2018. Preliminary study of the use of sulfonated polyether ether ketone (SPEEK) as proton exchange membrane for microbial fuel cell (MFC). Int. J. Renew. Energy Dev. 7(1):7– 12. doi:10.14710/ijred.7.1.7-12.
Rastogi A, Tiwari MK, Ghangrekar MM. 2021. A review on environmental occurrence, toxicity and microbial degradation of non-steroidal anti-inflammatory drugs (NSAIDs). J. Environ. Manage. 300:113694. doi:10.1016/j.jenvman.2021.113694.
Rinaldi W, Abubakar A, Rahmi RF, Silmina S. 2018. Tofu wastewater treatment by sediment microbial fuel cells. In: IOP Conf. Ser. Mater. Sci. Eng., volume 334. p. 012068. doi:10.1088/1757-899X/334/1/012068.
Sambavi SM, Vishali S, Asthika M, Sriraaman M, Mullai P. 2021. Bioconversion of food waste with cosubstrate to electricity using microbial fuel cell. In: J. Phys. Conf. Ser., volume 1979. p. 012011. doi:10.1088/1742-6596/1979/1/012011.
Sayed ET, Abdelkareem MA, Alawadhi H, Elsaid K, Wilberforce T, Olabi AG. 2021. Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells. Energy 221:119849. doi:10.1016/j.energy.2021.119849.
Sekrecka-Belniak A, Toczyłowska-Maminska R. 2018. Fungi-based microbial fuel cells. Energies 11(10):2827. doi:10.3390/en11102827.
Silveira G, de Aquino Neto S, Schneedorf JM. 2020. Development, characterization and application of a low-cost single chamber microbial fuel cell based on hydraulic couplers. Energy 208:118395. doi:10.1016/j.energy.2020.118395.
Sivakumar D. 2021. Wastewater treatment and bioelectricity production in microbial fuel cell: salt bridge configurations. Int. J. Environ. Sci. Technol. 18(6):1379– 1394. doi:10.1007/s13762-020-02864-0.
Verma M, Mishra V. 2021. Recent trends in upgrading the performance of yeast as electrode biocatalyst in microbial fuel cells. Chemosphere 284:131383. doi:10.1016/j.chemosphere.2021.131383.
Walter XA, Madrid E, Gajda I, Greenman J, Ieropoulos I. 2022. Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. J. Power Sources 520:230875. doi:10.1016/j.jpowsour.2021.230875.
Włodarczyk B, Włodarczyk PP. 2020. The membraneless microbial fuel cell (ML-MFC) with Ni-Co and Cu-B cathode powered by the process wastewater from yeast production. Energies 13(15):1–13. doi:10.3390/en13153976.
Zhao T, Xie B, Yi Y, Liu H. 2019. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring. Bioresour. Technol. 276:276–280. doi:10.1016/j.biortech.2019.01.009.
DOI: https://doi.org/10.22146/ijbiotech.80928
Article Metrics
Abstract views : 1182 | views : 770Refbacks
- There are currently no refbacks.
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.