Cloning and characterization of bgl6111 gene encoding β‐glucosidase from bagasse metagenome

https://doi.org/10.22146/ijbiotech.81536

Fitra Adi Prayogo(1), Benjarat Bunterngsook(2), Pattanop Kanokratana(3), Hermin Pancasakti Kusumaningrum(4), Dyah Wulandari(5), Anto Budiharjo(6*)

(1) Biomedical Sciences Study Program, Karya Husada University, Jl. R. Kompol Soekanto No.46, Semarang 50276, Indonesia
(2) Enzyme Technology Laboratory, National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
(3) Enzyme Technology Laboratory, National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
(4) Biotechnology Study Program, Diponegoro University, Jl. Prof Soedharto SH – Semarang 50275, Indonesia
(5) Molecular and Applied Microbiology Laboratory, Central Laboratory of Research and Service – Diponegoro University, Jl. Prof. Sudharto SH, Semarang 50275, Indonesia
(6) Biotechnology Study Program, Diponegoro University, Jl. Prof Soedharto SH – Semarang 50275, Indonesia; Molecular and Applied Microbiology Laboratory, Central Laboratory of Research and Service – Diponegoro University, Jl. Prof. Sudharto SH, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


β‐Glucosidase (BGL) is an essential enzyme for the hydrolysis of cellulose in industrial processes, but natural BGL enzymes are poorly understood. Metagenomics is a robust tool for bioprospecting in the search for novel enzymes from the entire community’s genomic DNA present in nature. The metagenomics approach simplifies the process of searching for new BGL enzymes by extracting DNA and retrieving its gene information through a series of bioinformatic analyses. In this study, we report the gene cloning, heterologous expression of the bgl6111 gene (accession number MW221260) in Pichia pastoris KM71, and the biochemical characterization of the recombinant enzyme. We successfully identified the bgl6111 sequence of 2,520 bp and 839 amino acids with a molecular size of 89.4 kDa. The amino acid sequence of the bgl6111 gene showed 67.61% similarity to BGL from an uncultured bacterium (ABB51613.1). The BGL product has the highest activity on the third day at 1.210 U/mL, categorized as low production. The enzymatic activity could enhance up to 539.8% of 7.742 U/mL by using the ultrafiltration method. Our findings provide insightful information that bgl6111 obtained from bagasse metagenome could be an alternative candidate for industrial applications in the future.


Keywords


β‐Glucosidase; Bagasse; Cloning; Metagenomic library

Full Text:

PDF


References

Ahmed A, Nasim FUH, Batool K, Bibi A. 2017. Microbial β-glucosidase: Sources, production, and applications. J. Appl. Environ. Microbiol. 5(1):31–46. doi:10.12691/jaem-5-1-4.

Ashok Kumar T. 2013. CFSSP: Chou and Fasman secondary structure prediction server. Wide Spectr. 1(9):15–19. doi:10.5281/zenodo.50733.

Behura SK, Severson DW. 2013. Codon usage bias: Causative factors, quantification methods and genome-wide patterns: With emphasis on insect genomes. Biol. Rev. 88(1):49–61. doi:10.1111/j.1469-185X.2012.00242.x.

Bhatia Y, Mishra S, Bisaria VS. 2002. Microbial β-glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol. 22(4):375–407. doi:10.1080/07388550290789568.

Borja GM, Meza Mora E, Barrón B, Gosset G, Ramírez OT, Lara AR. 2012. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode. Microb. Cell Fact. 11:132. doi:10.1186/1475-2859-11-132.

Chamoli S, Kumar P, Navani NK, Verma AK. 2016. Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis. Int. J. Biol. Macromol. 85:425–33. doi:10.1016/j.ijbiomac.2016.01.001.

Chen P, Fu X, Ng TB, Ye XY. 2011. Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnol. Lett. 33(12):2475–9. doi:10.1007/s10529-011-0724- 3.

Choi TJ, Geletu TT. 2018. High level expression and purification of recombinant flounder growth hormone in E. coli. J. Genet. Eng. Biotechnol. 16(2):347–355. doi:10.1016/j.jgeb.2018.03.006.

Chuck CP, Wong CH, Chow LMC, Fung KP, Waye MMY, Tsui SKW. 2009. Expression of SARS-coronavirus spike glycoprotein in Pichia pastoris. Virus Genes 38(1):1–9. doi:10.1007/s11262-008-0292-3.

Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN. 2012. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol. Biofuels 5(1):73. doi:10.1186/1754-6834-5-73.

Dodda SR, Aich A, Sarkar N, Jain P, Jain S, Mondal S, Aikat K, Mukhopadhyay SS. 2018. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus. J. Mol. Struct. 1156:105–114. doi:10.1016/j.molstruc.2017.11.078.

Farshadpour F, Makvandi M, Taherkhani R. 2015. Design, construction and cloning of truncated ORF2 and tPAsp-PADRE-truncated ORF2 gene cassette from hepatitis E virus in the pVAX1 expression vector. Jundishapur J. Microbiol. 8(12):e26035. doi:10.5812/jjm.26035.

Gao G, Wang A, Gong BL, Li QQ, Liu YH, He ZM, Li G. 2016. A novel metagenome-derived gene cluster from termite hindgut: Encoding phosphotransferase system components and high glucose tolerant glucosidase. Enzyme Microb. Technol. 84:24–31. doi:10.1016/j.enzmictec.2015.12.005.

Gomes-Pepe ES, Sierra EGM, Pereira MR, Castellane TCL, De Lemos EGM. 2016. Bg10: A novel metagenomics alcohol-tolerant and glucose-stimulated gh1 β-glucosidase suitable for lactosefree milk preparation. PLoS One 11(12):e0167932. doi:10.1371/journal.pone.0167932.

Haniyya, Mulyawati L, Helianti I, Pinmanee P, Kocharin K, Cantasingh D, Nimchua T. 2021. Characterization of recombinant Bacillus halodurans CM1 xylanase produced by Pichia pastoris KM71 and its potential application in bleaching process of bagasse pulp. Indones. J. Biotechnol. 26(1):15–24. doi:10.22146/IJBIOTECH.57701.

Hoseini SS, Sauer MG. 2015. Molecular cloning using polymerase chain reaction, an educational guide for cellular engineering. J. Biol. Eng. 9:2. doi:10.1186/1754-1611-9-2.

Kanokratana P, Eurwilaichitr L, Pootanakit K, Champreda V. 2015. Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. J. Biosci. Bioeng. 119(4):384– 91. doi:10.1016/j.jbiosc.2014.09.010.

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10(6):845– 58. doi:10.1038/nprot.2015.053.

Lewin A, Lale R, Wentzel A. 2017. Expression platforms for functional metagenomics: Emerging technology options beyond Escherichia coli. Funct. Metagenomics Tools Appl. p. 13–44. doi:10.1007/978-3- 319-61510-3_2.

Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K. 2015. Cultivation strategies to enhance productivity of Pichia pastoris: A review. Biotechnol. Adv. 33(6):1177–93. doi:10.1016/j.biotechadv.2015.05.008.

Lu J, Du L, Wei Y, Hu Y, Huang R. 2013. Expression and characterization of a novel highly glucosetolerant β-glucosidase from a soil metagenome. Acta Biochim. Biophys. Sin. (Shanghai). 45(8):664–73. doi:10.1093/abbs/gmt061.

Matsuzawa T, Watanabe M, Yaoi K. 2017. Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure. Appl. Microbiol. Biotechnol. 101(23-24):8353–8363. doi:10.1007/s00253-017-8525-9.

Mercedes RE, Julia MN, Del Pozo MV, González B, Golyshin PN, Polaina J, Ferrer M, Julia SA. 2016. Structural and functional characterization of a ruminal β-glycosidase defines a novel subfamily of glycoside hydrolase family 3 with permuted domain topology. J. Biol. Chem. 291(46):24200–24214. doi:10.1074/jbc.M116.747527.

Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol. Biofuels 8:16. doi:10.1186/s13068- 015-0200-8.

Nor MZM, Ramchandran L, Duke M, Vasiljevic T. 2018. Performance of a two-stage membrane system for bromelain separation from pineapple waste mixture as impacted by enzymatic pretreatment and diafiltration. Food Technol. Biotechnol. 56(2):218–227. doi:10.17113/ftb.56.02.18.5478.

Pearson WR. 2013. An introduction to sequence similarity (”homology”) searching. Curr. Protoc. Bioinforma. Chapter 3:3.1.1–3.1.8. doi:10.1002/0471250953.bi0301s42.

Prakash S, Singhal RS, Kulkarni PR. 2002. Enzymic debittering of Indian grapefruit (Citrus paradisi) juice. J. Sci. Food Agric. 82(4):394–397. doi:10.1002/jsfa.1059.

Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N. 2020. Metagenomic applications in exploration and development of novel enzymes from nature: A review. J. Genet. Eng. Biotechnol. 18:39. doi:10.1186/s43141-020-00043-9.

Quax TE, Claassens NJ, Söll D, van der Oost J. 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell 59(2):149–161. doi:10.1016/j.molcel.2015.05.035.

Rouyi C, Baiya S, Lee SK, Mahong B, Jeon JS, KetudatCairns JR, Ketudat-Cairns M. 2014. Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4. PLoS One 9(5):e96712. doi:10.1371/journal.pone.0096712.

Shrestha A, Palmieri N, Abd-Elfattah A, Ruttkowski B, Pagès M, Joachim A. 2017. Cloning, expression and molecular characterization of a Cystoisospora suis specific uncharacterized merozoite protein. Parasites and Vectors 10:68. doi:10.1186/s13071-017-2003-1.

Singh G, Verma AK, Kumar V. 2016. Catalytic properties, functional attributes and industrial applications of β- glucosidases. 3 Biotech 6(1):3. doi:10.1007/s13205- 015-0328-z.

Singhania RR, Patel AK, Saini R, Pandey A. 2016. Industrial enzymes: b-Glucosidases. Amsterdam: Elsevier B.V. p. 103–125. doi:10.1016/j.jclepro.2017.05.040.

Tang H, Hou J, Shen Y, Xu L, Yang H, Fang X, Bao X. 2013. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J. Microbiol. Biotechnol. 23(11):1577–85. doi:10.4014/jmb.1305.05011.

Trivedi RN, Akhtar P, Meade J, Bartlow P, Ataai MM, Khan SA, Domach MM. 2014. High-level production of plasmid DNA by Escherichia coli DH5αΩsacB by introducing inc mutations. Appl. Environ. Microbiol. 80(23):7154–60. doi:10.1128/AEM.02445-14.

Vogl T, Gebbie L, Palfreyman RW, Speight R. 2018. Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris. Appl. Environ. Microbiol. 84(6):e02712–17. doi:10.1128/AEM.02712-17.

Wang J, Lu L, Feng F. 2017. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris. Electron. J. Biotechnol. 28:7–13. doi:10.1016/j.ejbt.2017.04.002.

Wass MN, Kelley LA, Sternberg MJ. 2010. 3DLigandSite: Predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38:W469–73. doi:10.1093/nar/gkq406.

Wooley JC, Ye Y. 2009. Metagenomics: Facts and artifacts, and computational challenges. J. Comput. Sci. Technol. 25(1):71–81. doi:10.1007/s11390-010- 9306-4.

Yang F, Yang X, Li Z, Du C, Wang J, Li S. 2015. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl. Microbiol. Biotechnol. 99(21):8903–15. doi:10.1007/s00253-015-6619-9.

Yu XW, Sun WH, Wang YZ, Xu Y. 2017. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci. Rep. 7(1):16249. doi:10.1038/s41598-017-16577-x.

Yu Y, Zhou X, Wu S, Wei T, Yu L. 2014. High-yield production of the human lysozyme by Pichia pastoris SMD1168 using response surface methodology and high-cell-density fermentation. Electron. J. Biotechnol. 17(6):311–316. doi:10.1016/j.ejbt.2014.09.006.

Zang X, Liu M, Fan Y, Xu J, Xu X, Li H. 2018. The structural and functional contributions of β-glucosidaseproducing microbial communities to cellulose degradation in composting. Biotechnol. Biofuels 11:51. doi:10.1186/s13068-018-1045-8.

Zhang L, Fu Q, Li W, Wang B, Yin X, Liu S, Xu Z, Niu Q. 2017. Identification and characterization of a novel β- glucosidase via metagenomic analysis of Bursaphelenchus xylophilus and its microbial flora. Sci. Rep. 7:14850. doi:10.1038/s41598-017-14073-w.

Zhang XF, Ai YH, Xu Y, Yu XW. 2019. Highlevel expression of Aspergillus niger lipase in Pichia pastoris: Characterization and gastric digestion in vitro. Food Chem. 274:305–313. doi:10.1016/j.foodchem.2018.09.020.

Zhao L, Xie J, Zhang X, Cao F, Pei J. 2013. Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. J. Mol. Catal. B Enzym. 95:62–69. doi:10.1016/j.molcatb.2013.05.027. 20



DOI: https://doi.org/10.22146/ijbiotech.81536

Article Metrics

Abstract views : 936 | views : 800

Refbacks



Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.