Characterization and antibacterial activity of biosynthesized silver nanoparticles using Stachytarpheta jamaicensis leaf extract as bioreduction

https://doi.org/10.22146/ijbiotech.88438

Sandy Samsul Bahry(1), Ari Susilowati(2*), Artini Pangastuti(3)

(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta, Central Java 57126, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta, Central Java 57126, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Kentingan, Surakarta, Central Java 57126, Indonesia
(*) Corresponding Author

Abstract


Their nanometer size, broad spectrum, and antibacterial mechanism give silver nanoparticles (NPAg) the potential to be used to inhibit the growth and spread of methicillin‐resistant Staphylococcus aureus (MSRA) in medical devices. Synthesis of AgNPs from Stachytarpheta jamaicensis leaf extract is considered more environmentally friendly and has low production costs. The objective of this study was to investigate the properties and antibacterial potential of AgNPs by utilizing S. jamaicensis leaf extract at concentrations of 0.5%, 1.0%, and 1.5% in a 1 mM AgNO3 precursor. Nanoparticle characterization was performed on the AgNP supernatant obtained by centrifuging the synthesis solution at 100 rpm for 5 min. Characterization of the NPAg size was confirmed by surface plasmon resonance (SPR) analysis in UV‐Vis spectrophotometer, while the size distribution was measured by a particle size analyzer. Surface morphology was performed using scanning electron microscopy (SEM), and antibacterial activity was evaluated by the disc diffusion method. The results showed that AgNPs had the best nanoparticle characteristics in an extract concentration of 0.5%, the synthesis indicated by SPR at a wavelength of 434 nm and an average size of 80.67 nm. SEM analysis showed the formation of clusters at variations of 1.0% and 1.5%. The antibacterial activity of AgNPs against MRSA was the highest at 0.5%, with an inhibition zone diameter of 0.77 mm. The higher concentration of S. jamaicencis leaf extract increases the risk of cluster formation, which enlarges the AgNPs, while antibacterial activity was reduced.


Keywords


Antibacteria; Biosynthesis; MRSA; Silver nanoparticles; Stachytarpheta jamaicensis

Full Text:

PDF


References

Abd Karim F, Tungadi R, Thomas NA. 2022. Biosintesis nanopartikel perak ekstrak etanol 96% daun kelor (Moringa oleifera) dan uji aktivitasnya sebagai antioksidan [Biosynthesis of silver nanoparticles from ethanol extract of 96% Moringa leaves (Moringa oleifera) and testing its activity as an antioxidant]. Indones. J. Pharm. Educ. 2(1):32–41. doi:10.37311/ijpe.v2i1.11725.

Alavi M, Karimi N, Valadbeigi T. 2019. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis lichen aqueous extract against multi­drug­resistant bacteria. ACS Biomater. Sci. Eng. 5(9):4228–4243. doi:10.1021/acsbiomaterials.9b00274.

Amaliyah S, Sabarudin A, Masruri M, Sumitro SB. 2022. Characterization and antibacterial application of biosynthesized silver nanoparticles using Piper retrofractum Vahl fruit extract as bioreductor. J. Appl. Pharm. Sci. 12(3):103–114. doi:10.7324/JAPS.2022.120311.

Amiri P, Behin J. 2021. Assessment of aqueous phase ozonation on aggregation of polyvinylpyrrolidonecapped silver nanoparticles. Environ. Sci. Pollut. Res. 28(26):34838–34851. doi:10.1007/s11356­021­ 12475­y.

Aryal S. 2021. Mc Farland Standarts ­Principle, Preparation, Uses, Limitations. Microbe Notes. URL https: //microbenotes.com/mcfarland­standards/.

Cacaci M, Biagiotti G, Toniolo G, Albino M, Sangregorio C, Severi M, Di Vito M, Squitieri D, Contiero L, Paggi M, Marelli M, Cicchi S, Bugli F, Richichi B. 2023. Shaping silver nanoparticles’ size through the carrier composition: Synthesis and antimicrobial activity. Nanomaterials 13(10):1585. doi:10.3390/nano13101585.

Chahardoli A, Karimi N, Fattahi A. 2017. Biosynthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Nigella arvensis seed extract. Iran. J. Pharm. Res. 16(3):1167.

Devanesan S, Alsalhi MS. 2021. Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int. J. Nanomedicine 16:3343–3356. doi:10.2147/IJN.S307676.

Directorate General of Food and Drug Administration. 2000. Parameter Standar Umum Ekstrak Tumbuhan Obat. Departemen Kesehatan Republik Indonesia [General Standard Parameters of Medicinal Plant Extracts]. Jakarta: Indonesian Ministry of Health.

Du P, Xu Y, Shi Y, Xu Q, Li S, Gao M. 2022. Preparation and shape change of silver nanoparticles (AgNPs) loaded on the dialdehyde cellulose by in­situ synthesis method. Cellulose 29(12):6831–6843. doi:10.1007/s10570­022­04692­6.

Dwiastuti R, Suhendra PA, Yuliani SH, Riswanto FDO. 2022. Application of the central composite design approach for optimization of the nanosilver formula using a natural bioreductor from Camellia sinensis L. extract. J. Appl. Pharm. Sci. 12(8):048–056. doi:10.7324/JAPS.2022.120806.

Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, Hetta HF, Shaheen TI. 2020. Endophytic Streptomyces laurentii mediated green synthesis of Ag­NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 9(10):641. doi:10.3390/antibiotics9100641.

Erlin E, Rahmat A, Redjeki S, Purwianingsih W. 2020. Deteksi methicilin resistant Staphylococcus aureus (MRSA) sebagai penyebab infeksi nosokomial pada alat­alat di ruang perawatan bedah [Detection of methicillin resistant Staphylococcus aureus (MRSA) as a cause of nosocomial infections in instruments in the surgical treatment room]. Quagga J. Pendidik. dan Biol. 12(2):137–144. doi:10.25134/quagga.v12i2.2671.

Fazrin EI, Naviardianti AI, Wyantuti S, Gaffar S, Hartati YW. 2020. Review: Sintesis dan karakterisasi nanopartikel emas (AuNP) serta konjugasi AuNPs dengan DNA dalam aplikasi biosensor elektrokimia [Review: Synthesis and characterization of gold nanoparticles (AuNP) and conjugation of AuNPs with DNA in electrochemical biosensor applications]. PENDIPA J. Sci. Educ. 4(2):21–39. doi:10.33369/pendipa.4.2.21­39.

Hasanzadeh A, Gholipour B, Rostamnia S, Eftekhari A, Tanomand A, Valizadeh K A, Khaksar S, Khalilov R. 2021. Biosynthesis of AgNPs onto the urea­based periodic mesoporous organosilica (AgxNPs/Ur­PMO) for antibacterial and cell viability assay. J. Colloid Interface Sci. 585:676–683. doi:10.1016/j.jcis.2020.10.047.

Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, Panáček A. 2022. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 11(1):1115–1142. doi:10.1515/ntrev­2022­0059.

Hutagalung R, Permana AP, Isa DR. 2022. Kajian pelapukan granit Daerah Leato berdasarkan analisis XRD dan SEM [Granite weathering study in Leato Area based on XRD and SEM analysis]. EnviroScienteae 18(1):38–43. doi:10.20527/es.v18i1.12977.

Indah, Asri M, Auliah N, Ashari AT. 2022. Sintesis nanopartikel perak dengan air rebusan daun Pegagan (Centella asiatica L.) dan uji aktivitas dalam menghambat pertumbuhan bakteri Pseudomonas aeruginosa dan Staphylococcus aureus [Synthesis of silver nanoparticles with boiled water of Gotu Kola leaves (Centella asiatica L.) and activity test in inhibiting the growth of Pseudomonas aeruginosa and Staphylococcus aureus bacteria]. Majalah Farmasi dan Farmakologi 26(2):88–91.

Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. 2019. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53:101174. doi:10.1016/j.jddst.2019.101174.

Jumawardi R, Ananto AD, Deccati RF. 2021. Aktivitas antioksidan ekstrak etanol daun pecut kuda (Stachytarpheta jamaicensis (L.) Vahl) menggunakan metode ekstraksi berbasis gelombang ultrasonic [Antioxidant activity of ethanol extract of horsetail leaves (Stachytarpheta jamaicensis (L.) Vahl) using ultrasonic wave­based extraction method]. Sasambo J. Pharm. 2(2):80–86. doi:10.29303/sjp.v2i2.85.

Kang S, Sunwoo K, Jung Y, Hur JK, Park KH, Kim JS, Kim D. 2020. Membrane ­targeting triphenylphosphonium functionalized ciprofloxacin for methicillinresistant Staphylococcus aureus (MRSA). Antibiotics 9(11):758. doi:10.3390/antibiotics9110758.

Lee SH, Jun BH. 2019. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 20(4):865–870. doi:10.3390/ijms20040865.

Lestari GAD, Ratnasari PMD, Sibarani J. 2022. Aplikasi antibakteri nanopartikel perak (NPAg) hasil biosintesis dengan ekstrak air daun kemangi [Antibacterial application of silver nanoparticles (NPAg) biosynthesized with basil leaf water extract]. KOVALEN J. Ris. Kim. 8(1):17–24. doi:10.22487/kovalen.2022.v8.i1.15771.

Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. 2022. Overcoming methicillin­resistance Staphylococcus aureus (MRSA) using antimicrobial peptides­silver nanoparticles. Antibiotics 11(7):951. doi:10.3390/antibiotics11070951.

Mateo EM, Jiménez M. 2022. Silver nanoparticlebased therapy: Can it be useful to combat multidrug resistant bacteria? Antibiotics 11(9):1205. doi:10.3390/antibiotics11091205.

Me R, Istamam MH, Amir NAS, Iberahim R, Shanthi A, Pungot NH, Ibrahim N. 2020. Role of Plant’s metabolites in the biomimetic synthesis of plant­mediated silver nanoparticles: A review. Asian J. Fundam. Appl. Sci. 1(4):1–9.

Murillo-­Rábago EI, Vilchis­-Nestor AR, Juarez-­Moreno K, Garcia­-Marin LE, Quester K, Castro-­Longoria E. 2022. Optimized synthesis of small and stable silver nanoparticles using intracellular and extracellular components of fungi: An alternative for bacterial inhibition. Antibiotics 11(6):800. doi:10.3390/antibiotics11060800.

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines­Woodhouse G, Kashef Hamadani BH, Kumaran EA, McManigal B, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda­Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Cook AJ, Cooper B, Cressey TR, Criollo­Mora E, Cunningham M, Darboe S, Day NP, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher­Pearson N, Forrest K, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Khorana M, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Mturi N, Munera­Huertas T, Musicha P, MussiPinhata MM, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Olivas­Martinez A, Olliaro P, Ooko E, Ortiz­Brizuela E, Peleg AY, Perrone C, Plakkal N, Ponce­de Leon A, Raad M, Ramdin T, Riddell A, Roberts T, Robotham JV, Roca A, Rudd KE, Russell N, Schnall J, Scott JAG, Shivamallappa M, SifuentesOsornio J, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vu H, Walsh T, Waner S, Wangrangsimakul T, Wozniak T, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M. 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399(10325):629–655. doi:10.1016/S0140­6736(21)02724­0.

Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. 2024. Green synthesis, characterization and application of silver nanoparticles using bioflocculant: A review. Bioeng. 11(5):492. doi:10.3390/bioengineering11050492.

Nkuwi EJ, Kabanangi F, Joachim A, Rugarabamu S, Majigo M. 2018. Methicillin­resistant Staphylococcus aureus contamination and distribution in patient’s care environment at Muhimbili National Hospital, Dar es Salaam­ Tanzania. BMC Res. Notes 11(1):1–6. doi:10.1186/s13104­018­3602­4.

Oprescu EE, Enascuta CE, Radu E, Ciltea ­Udrescu M, Lavric V. 2022. Does the ultrasonic field improve the extraction productivity compared to classical methods – Maceration and reflux distillation? Chem. Eng. Process. ­ Process Intensif. 179:09082. doi:10.1016/j.cep.2022.109082.

Prasetyaningtyas T, Prasetya AT, Widiarti N. 2020. Sintesis nanopartikel perak termodifikasi kitosan dengan bioreduktor ekstrak daun kemangi (Ocimum basilicum L.) dan uji aktivitasnya sebagai antibakteri [Synthesis of chitosan modified silver nanoparticles with basil leaf extract (Ocimum basilicum L.) bioreductant and test of its activity as an antibacterial]. Indones. J. Chem. Sci. 9(1):37–43.

Rosman NSR, Masimen MAA, Harun NA, Idris I, Ismail WIW. 2021. Biogenic silver nanoparticles (AgNPs) from Marphysa moribidii extract: Optimization of synthesis parameters. Int. J. Technol. 12(3):635. doi:10.14716/ijtech.v12i3.4303.

Ruekit S, Srijan A, Serichantalergs O, Margulieux KR, Mc Gann P, Mills EG, Stribling WC, Pimsawat T, Kormanee R, Nakornchai S, Sakdinava C, Sukhchat P, Wojnarski M, Demons ST, Crawford JM, Lertsethtakarn P, Swierczewski BE. 2022. Molecular characterization of multidrug­resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017–2018). BMC Infect. Dis. 22(1):695. doi:10.1186/s12879­ 022­07678­8.

Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, Pandey RA. 2016. Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int. Nano Lett. 6(3):173– 181. doi:10.1007/s40089­016­0184­9.

Sardjono RE, Gunawan R, Anwar B, Erdiwansyah, Mamat R. 2022. A mini review: Biosythesis of silver nanoparticles and its activity as antioxidant. Moroccan J. Chem. 10(4):808–821. doi:10.48317/IMIST.PRSM/morjchem­v10i3.30801.

Sarhan AS, Abdel­Hamid MI, Hanie R. 2022. Green synthesis of (CS/OLE) AgNPs and evaluation of their physico­chemical characteristic. Appl. Nanosci. 12(9):2765–2776. doi:10.1007/s13204­022­02538­y.

Septriani Y, Muldarisnur M. 2022. Kontrol ukuran nanopartikel perak dengan variasi konsentrasi ekstrak kulit buah manggis [Control of silver nanoparticle size with variation of mangosteen peel extract concentration]. J. Fis. Unand 11(1):68–74. doi:10.25077/jfu.11.1.68­74.2022.

Suhendra CP, Widarta IWR, Wiadnyani AAIS. 2019. Pengaruh konsentrasi etanol terhadap aktivitas antioksidan ekstrak rimpang ilalang (Imperata cylindrica (l) Beauv.) pada ekstraksi menggunakan gelombang ultrasonik [The effect of ethanol concentration on the antioxidant activity of ilalang rhizome extract (Imperata cylindrica (l) Beauv.) in ultrasonic wave extraction]. J. Ilmu dan Teknol. Pangan 8(1):27–35. doi:10.24843/itepa.2019.v08.i01.p04.

Sur UK, Ankamwar B, Karmakar S, Halder A, Das P. 2018. Green synthesis of silver nanoparticles using the plant extract of Shikakai and Reetha. In: Mater. Today Proc., volume 5. p. 2321–2329. doi:10.1016/j.matpr.2017.09.236.

Ulayya HF, Suwele YAL, Junior EI, Rinjani NA, Izat S, Suprapto S. 2019. Pemanfaatan lendir bekicot Afrika (Achatina fulica) sebagai obat luka bakar berbasis nanoemulsi [Utilization of African snail slime (Achatina fulica) as a nanoemulsion­based burn wound medicine]. Kartika J. Ilm. Farm. 6(2):91–94. doi:10.26874/kjif.v6i2.159.

Xia Q, Yang L, Hu K, Li K, Xiang J, Liu G, Wang Y. 2018. Chromium cross­linking based immobilization of silver nanoparticle coating on leather surface with broad­spectrum antimicrobial activity and durability. ACS Appl. Mater. Interfaces 11(2):2352–2363. doi:10.1021/acsami.8b17061.

Xu B, Azam SM, Feng M, Wu B, Yan W, Zhou C, Ma H. 2021. Application of multi­frequency power ultrasound in selected food processing using large­scale reactors: A review. Ultrason. Sonochem. 81:105855. doi:10.1016/j.ultsonch.2021.105855.

Yan X, He B, Liu L, Qu G, Shi J, Hu L, Jiang G. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics 10(4):557–564. doi:10.1039/c7mt00328e.

Yanuar E, Umam K, Sarwana W, Huda I, Wijaya D, Roto R, Mudasir M. 2022. Preparation and Vibrio sp. antibacterial activity of silver nanoparticles mediated by Chromolaena odorata leaf extract using different temperatures. Asian J. Biol. 14(1):25–37. doi:10.9734/ajob/2022/v14i130203.

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. 2020. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine 15:2555–2562. doi:10.2147/IJN.S246764.



DOI: https://doi.org/10.22146/ijbiotech.88438

Article Metrics

Abstract views : 12 | views : 9

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.