Development of a dimer‐based screening system that targets PhoR, a sensor kinase of the two‐component regulatory system, in Mycobacterium tuberculosis

https://doi.org/10.22146/ijbiotech.89602

Nathanael Steven(1), Reza Aditama(2), Almira Alifia(3), Elvira Hermawati(4), Eri Bachtiar(5), Mellysa Rahmita(6), Azzania Fibriani(7), Yana Maolana Syah(8), Ernawati Arifin Giri-Rachman(9*)

(1) Genetics and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Biology Department, Faculty of Science and Technology, Calvin Institute of Technology, Jl. Industri Blok B14 Kav. 1, Central Jakarta 10610, Indonesia
(2) Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(3) Genetics and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(4) Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(5) Marine Science Department, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, Jatinangor 45363, Indonesia
(6) Genetics and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(7) Genetics and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(8) Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Deceased during the preparation of the manuscript
(9) Genetics and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


The PhoR‐PhoP two‐component regulatory system, which is responsible for regulating the virulence of Mycobacterium tuberculosis, presents a promising target for the development of novel tuberculosis drugs. Disrupting the interaction of PhoR‐PhoP proteins has the potential to decrease the virulence of the bacterium, rendering it more vulnerable to immune system clearance. A dimer‐based screening system was developed to screen for inhibitors of PhoR dimerization. The coding sequence for the cytoplasmic domain of PhoR (cytoPhoR) was combined with the DNA‐binding domain of the AraC repressor coding sequence. These sequences were positioned upstream of the emerald green fluorescent protein (EmGFP), which serves as a reporter gene. and controlled by the araC promoter. The in silico investigation examined the modeling of the fusion AraC_cytoPhoR and its binding to the promoter. The plasmid construct generated, namely pAraC_PhoRMTB, was synthesized and confirmed using DNA sequencing. The confirmed plasmid was then transformed into Escherichia coli BL21(DE3). Both SDS PAGE and fluorescence analysis indicated that the transformed culture expressed the AraC‐cytoPhoR fusion protein and displayed lower relative fluorescence in comparison to the transformed culture consisting solely of the AraC DNA‐binding domain coding sequence. This reduction in fluorescence suggests that the dimer‐based screening system effectively monitors the inhibition of dimerization of cytoPhoR. These analysis findings indicate that the system is now ready for use in the screening of PhoR dimerization inhibitors.

Keywords


Dimerization inhibitor; Mycobacterium tuberculosis; PhoR; Screening; Two‐component regulatory system

Full Text:

PDF


References

Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S. 2013. A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb. Cell Fact. 12(1):1–14. doi:10.1186/1475­2859­ 12­26.

Bhat S, Banerjee A, Alagesan S. 2023. AraCbased biosensor for the detection of isoprene in E. coli. ACS Omega 8(30):26806–26815. doi:10.1021/acsomega.3c01164

Broset E, Martín C, Gonzalo­Asensio J. 2015. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of phoPR: Implications for virulence regulation and application to vaccine development. MBio 6(5):e01289–15. doi:10.1128/mBio.01289­15.

Dhande C, Mistry D, Karthic A, Singh R, Barage S. 2023. Computational approaches to identify novel inhibitors for the drugresistant Mycobacterium tuberculosis DprE1 enzyme. Indones. J. Biotechnol. 28(3):180– 190. doi:10.22146/ijbiotech.80145.

Fauziah PN. 2015. Pengembangan sistem penapisan antituberkular baru pada Escherichia coli BL21(DE3) melalui fusi PhoR domain sitoplasmik Mycobacterium tuberculosis H37Rv dengan protein represor Zif23 [Development of a new antitubercular screening system in Escherichia coli BL21(DE3) through fusion of the cytoplasmic PhoR domain of Mycobacterium tuberculosis H37Rv with the Zif23 repressor protein]. Master thesis, Institut Teknologi Bandung, Bandung.

Fauziah PN, Giri­Rachman EA. 2016. Analisis dan karakteristik promoter gen zif23 untuk pengembangan sistem penapisan antituberkular baru [Analysis and characterization of the zif23 gene promoter for the development of a new antitubercular screening system]. Jurnal Kesehatan Kartika 11(1):1–7.

Feng L, Chen S, Hu Y. 2018. PhoPR positively regulates whiB3 expression in response to low pH in pathogenic mycobacteria. J. Bacteriol. 200(8):e00766–17. doi:10.1128/JB.00766­17.

Giri­-Rachman EA, Steven N, Rahmita M, Fibriani A. 2016. Produk bakteri Escherichia coli yang dimodifikasi secara genetik untuk penapisan cepat kandidat obat antituberkulosis baru [Genetically modified Escherichia coli products for rapid screening of new antituberculosis drug candidates]. Indonesian Patent Application No. ID/P00201704939.

Hirakawa H, Kurushima J, Hashimoto Y, Tomita H. 2020. Progress overview of bacterial two­component regulatory systems as potential targets for antimicrobial chemotherapy. Antibiotics 9(10):635–649. doi:10.3390/antibiotics9100635.

Indonesia Ministry of Health. 2023. Indonesia Raih Rekor Capaian Deteksi TBC Tertinggi di Tahun 2022 [Indonesia Achieves Highest Tuberculosis Detection Record in 2022]. URL https://promkes.kemkes.go.id/indonesia­raih­re kor­capaian­deteksi­tbc­tertinggi­di­tahun­2022. Accessed: 2023­06­16

Kurnia IS. 2012. Pengembangan sistem penapisan antituberkular baru pada Escherichia coli BL21(DE3)pLysS melalui fusi PhoR domain sitoplasmik Mycobacterium tuberculosis H37Rv dengan protein represor IclR [Development of a new antitubercular screening system in Escherichia coli BL21(DE3)pLysS through fusion of the cytoplasmic PhoR domain of Mycobacterium tuberculosis H37Rv with the IclR repressor protein]. Master thesis, Institut Teknologi Bandung, Bandung.

Lai N, Luo Y, Fei P, Hu P, Wu H. 2021. One stone two birds: Biosynthesis of 3­hydroxypropionic acid from CO2 and syngas­derived acetic acid in Escherichia coli. Synth. Syst. Biotechnol. 6(3):144– 152. doi:10.1016/j.synbio.2021.06.003. doi:10.1107/s0021889892009944.

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26(2):283–291

Lee YV, Wahab HA, Choong YS. 2015. Potential inhibitors for isocitrate lyase of mycobacterium tuberculosis and Non­ M. tuberculosis: A summary. Biomed Res. Int. 2015. doi:10.1155/2015/895453.

Moule MG, Cirillo JD. 2020. Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis. Front. Cell. Infect. Microbiol. 10:65. doi:10.3389/fcimb.2020.00065.

Okada A, Gotoh Y, Watanabe T, Furuta E, Yamamoto K, Utsumi R. 2007. Targeting two­component signal transduction: A novel drug discovery system. Methods Enzymol. 422:386–395. doi:10.1016/S0076­ 6879(06)22019­6.

Pérez I, Campos­Pardos E, Díaz C, Uranga S, Sayes F, Vicente F, Aguiló N, Brosch R, Martín C, GonzaloAsensio J. 2022. The Mycobacterium tuberculosis PhoPR virulence system regulates expression of the universal second messenger c­di­AMP and impacts vaccine safety and efficacy. Mol. Ther. Nucleic Acids 27:1235–1248. doi:10.1016/j.omtn.2022.02.011.

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30(1):70–82. doi:10.1002/pro.3943.

Queiroz A, Riley LW. 2017. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response. Rev. Soc. Bras. Med. Trop. 50(1):9–18. doi:10.1590/0037­8682­0230­2016.

Rahmita M. 2015. Pengembangan sistem penapisan antituberkular baru dengan target PhoR Mycobacterium tuberculosis H37Rv menggunakan protein represor AraC Escherichia coli [Development of a new antituberculosis drug screening system targeting PhoR of Mycobacterium tuberculosis H37Rv using the AraC repressor protein from Escherichia coli]. Master thesis, Institut Teknologi Bandung, Bandung.

Ryndak M, Wang S, Smith I. 2008. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol. 16(11):528–534. doi:10.1016/j.tim.2008.08.006

Sreejit G, Ahmed A, Parveen N, Jha V, Valluri VL, Ghosh S, Mukhopadhyay S. 2014. The ESAT­6 protein of Mycobacterium tuberculosis interacts with beta­2­ microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog. 10(10):1–19. doi:10.1371/journal.ppat.1004446.

Sundari S, Palao J, Giri­Rachman E. 2009. Targeting PhoP­PhoR two component signal transduction to develop a novel high throughput screening system for searching new antibacterial against M. tuberculosis. In: Proceeding of International Conference and Exhibition on Biomass Production. Bandung: School of Life Sciences and Technology Institut Teknologi Bandung.

World Health Organization W. 2022. Global Tuberculosis Report: 2022. Geneva: World Health Organization.

Xing D, Ryndak MB, Wang L, Kolesnikova I, Smith I, Wang S. 2017. Asymmetric structure of the dimerization domain of PhoR, a sensor kinase important for the virulence of Mycobacterium tuberculosis. ACS Omega 2(7):3509–3517. doi:10.1021/acsomega.7b00612.



DOI: https://doi.org/10.22146/ijbiotech.89602

Article Metrics

Abstract views : 1540 | views : 737

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.