Exploring the mechanism of Glycyrrhiza glabra and Curcuma domestica against skin photoaging based on network pharmacology
Oktavia Rahayu Adianingsih(1*), Fifi Farida Fajrin(2), Christopher Kuncoro Johan(3)
(1) Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, 61543 Malang, Indonesia
(2) Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, 61543 Malang, Indonesia
(3) Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, 61543 Malang, Indonesia
(*) Corresponding Author
Abstract
Excessive exposure to UV radiation results in skin photoaging, which may be prevented or treated using natural plant compounds. Herbal cosmetics and medicines have grown in popularity due to the abundance of relatively safe compounds. This research aims to explore the network pharmacology of Glycyrrhiza glabra (GG) and Curcuma domestica (CD) against skin photoaging. Active compounds from GG‐CD were sourced from databases including TCSMP, KnapSack, TCMID, and published literature, while disease targets were collected from GeneCards and OMIM databases. The STRING database was utilized to construct the protein‐protein interaction (PPI) network. Enrichment analyses for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed using Metascape. The herb‐compounds‐target‐pathway‐disease (H‐C‐T‐P‐D) network was visualized using Cytoscape software. A total of 529 compounds, 2,335 active compound targets, and 120 skin aging targets were obtained. GO enrichment revealed 1,635 biological processes, 67 cellular components, and 121 molecular functions. The study suggests that GG and CD have the potential to treat skin photoaging by targeting multiple targets, such as TP53, TNF, AKT1, IL6, and IL‐1B, as well as multiple pathways, such as those in cancer, apoptosis, TNF, IL‐17, and the AGE‐RAGE signaling pathway. Experiment validation is necessary to confirm the preliminary network pharmacology results.
Keywords
References
Aghajani J, Farnia P, Farnia P, Ghanavi J, Velayati AA. 2022. Molecular dynamic simulations and molecular docking as a potential way for designed new inhibitor drug without resistance. Tanaffos 21(1):1–14.
Agrawal R, Kaur IP. 2010. Inhibitory effect of encapsulated curcumin on ultravioletinduced photoaging in mice. Rejuvenation Res. 13(4):397–410. doi:10.1089/rej.2009.0906.
Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, Sahebkar A, Emami SA. 2019. Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): A Review. Curr. Pharm. Des. 25(8):871–935. doi:10.2174/1381612825666190402163940.
Bosch R, Philips N, SuárezPérez JA, Juarranz A, Devmurari A, ChalensoukKhaosaat J, González S. 2015. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategiewith phytochemicals. Antioxidants 4(2):248–268. doi:10.3390/antiox4020248.
CammayoFletcher PLT, Flores RA, Nguyen BT, Villavicencio AGM, Lee SY, Kim WH, Min W. 2023. Promotion of Th1 and Th2 responses over Th17 in Riemerella anatipestifer stimulation in chicken splenocytes: Correlation of ggamiR4563p and ggamiR165p with NOS2 and CCL5 expression. PLoS One 18(11 November):e0294031. doi:10.1371/journal.pone.0294031.
Cerulli A, Masullo M, Montoro P, Piacente S. 2022. Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and their constituents as active cosmeceutical ingredients. Cosmetics 9(1):7. doi:10.3390/cosmetics9010007.
Chainoglou E, HadjipavlouLitina D. 2020. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids. Int. J. Mol. Sci. 21(6):1975. doi:10.3390/ijms21061975.
Chang M, Wu M, Li H. 2017. Curcumin combined with glycyrrhetinic acid inhibits the development of hepatocellular carcinoma cells by downregulating the PTEN/PI3K/AKT signalling pathway. Am. J. Transl. Res. 9(12):5567–5575.
Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, Meng H, Yi F. 2022. Advanced glycation end products in the skin: Molecular mechanisms, methods of measurement, and inhibitory pathways. Front. Med. 9:837222. doi:10.3389/fmed.2022.837222.
Chen JJ, Tsai CS, Hwang TL, Shieh PC, Chen JF, Sung PJ. 2010. Sesquiterpenes from the rhizome of Curcuma longa with inhibitory activity on superoxide generation and elastase release by neutrophils. Food Chem. 119(3):974–980. doi:10.1016/j.foodchem.2009.07.060.
Chen X, Yang C, Jiang G. 2021. Research progress on skin photoaging and oxidative stress. Postep. Dermatologii i Alergol. 38(6). doi:10.5114/ada.2021.112275.
Costa EF, Magalhães WV, Di Stasi LC. 2022. Recent advances in herbalderived products with skin antiaging properties and cosmetic applications. Molecules 27(21):7518. doi:10.3390/molecules27217518.
Csekes E, Račková L. 2021. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci. 22(23):12641. doi:10.3390/ijms222312641.
Du Y, Doraiswamy C, Mao J, Zhang Q, Liang Y, Du Z, Vasantharaghavan R, Joshi MK. 2022. Facial skin characteristics and concerns in Indonesia: A crosssectional observational study. Ski. Res. Technol. 28(5):719–728. doi:10.1111/srt.13189.
Elhawary EA, Moussa AY, Singab ANB. 2024. Genus Curcuma: chemical and ethnopharmacological role in aging process. BMC Complement. Med. Ther. 24(1):31. doi:10.1186/s1290602304317w.
Gan D, Xu X, Chen D, Feng P, Xu Z. 2019. Network pharmacologybased pharmacological mechanism of the chinese medicine rhizoma drynariae against osteoporosis. Med. Sci. Monit. 25:5700– 5716. doi:10.12659/MSM.915170.
Gerber PA, Buhren BA, Schrumpf H, Hevezi P, Bölke E, Sohn D, Jänicke RU, Belum VR, Robert C, Lacouture ME, Homey B. 2016. Mechanisms of skin aging induced by EGFR inhibitors. Support. Care Cancer 24(10):4241–4248. doi:10.1007/s0052001632547.
Gritsenko DA, Orlova OA, Linkova NS, Khavinson VK. 2017. Transcription factor p53 and skin aging. Adv. Gerontol. 7(2):114–119. doi:10.1134/S2079057017020072.
GromkowskaKȩpka KJ, PuścionJakubik A, Markiewicz Żukowska R, Socha K. 2021. The impact of ultraviolet radiation on skin photoaging — review of in vitro studies. J. Cosmet. Dermatol. 20(11). doi:10.1111/jocd.14033.
Haga M, Okada M. 2022. Systems approaches to investigate the role of NFκB signaling in aging. Biochem. J. 479(2). doi:10.1042/BCJ20210547.
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. 2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(DATABASE ISS.):D514–7. doi:10.1093/nar/gki033.
Han M, Li H, Ke D, Tian LM, Hong Y, Zhang C, Tian DZ, Chen L, Zhan LR, Zong SQ. 2022. Mechanism of Ba Zhen Tang delaying skin photoaging based on network pharmacology and molecular docking. Clin. Cosmet. Investig. Dermatol. 15:763–781. doi:10.2147/CCID.S344138.
Hasan MK, Ara I, Mondal MSA, Kabir Y. 2021. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 7(6):e07240. doi:10.1016/j.heliyon.2021.e07240.
Ho TJ, Ahmed T, Shibu MA, Lin YJ, Shih CY, Lin PY, Ling SZ, Chiang CY, Kuo WW, Huang CY. 2024. A prospective review of the healthpromoting potential of Jing Si Herbal Tea. Tzu Chi Med. J. 36(1):1–22. doi:10.4103/tcmj.tcmj_194_23.
Huang L, Xie D, Yu Y, Liu H, Shi Y, Shi T, Wen C. 2018. TCMID 2.0: A comprehensive resource for TCM. Nucleic Acids Res. 46(D1):D1117–D11. doi:10.1093/nar/gkx1028.
Ismail NI, Othman I, Abas F, Lajis NH, Naidu R. 2020. The curcumin analogue, MS13 (1,5Bis(4hydroxy3 methoxyphenyl)1,4pentadiene3one), inhibits cell proliferation and induces apoptosis in primary and metastatic human colon cancer cells. Molecules 25(17):3798. doi:10.3390/molecules25173798.
Jiang S, Huang C, Wang S, Huang B, Wu D, Zheng G, Cai Y. 2022. Network pharmacologybased strategy for predicting therapy targets of Citri Reticulatae Pericarpium on Myocardial Hypertrophy. Biomed Res. Int. 2022:4293265. doi:10.1155/2022/4293265.
Ke Y, Wang XJ. 2021. TGFβ signaling in photoaging and UVinduced skin cancer. J. Invest. Dermatol. 141(4):1104–1110. doi:10.1016/j.jid.2020.11.007.
Kim SH, Kim JH, Lee SJ, Jung MS, Jeong DH, Lee KH. 2022. Minimally invasive skin sampling and transcriptome analysis using microneedles for skin type biomarker research. Ski. Res. Technol. 28(2):322– 335. doi:10.1111/srt.13135.
Konger RL, DerrYellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. 2021. Epidermal pparγ is a key homeostatic regulator of cutaneous inflammation and barrier function in mouse skin. Int. J. Mol. Sci. 22(16):8634. doi:10.3390/ijms22168634.
Krutmann J, Passeron T, Gilaberte Y, Granger C, Leone G, Narda M, Schalka S, Trullas C, Masson P, Lim HW. 2020. Photoprotection of the future: challenges and opportunities. J. Eur. Acad. Dermatology Venereol. 34(3):447–454. doi:10.1111/jdv.16030.
Kumar V. 2021. Going, tolllike receptors in skin inflammation and inflammatory diseases. EXCLI J. 20:52– 79. doi:10.17179/excli20203114.
Lee AY. 2021. Skin pigmentation abnormalities and their possible relationship with skin aging. Int. J. Mol. Sci. 22(7):3727. doi:10.3390/ijms22073727.
Lohakul J, Chaiprasongsuk A, Jeayeng S, Saelim M, Muanjumpon P, Thanachaiphiwat S, Tripatara P, Soontrapa K, Lumlerdkij N, Akarasereenont P, Panich U. 2021. The protective effect of polyherbal formulation, Harak formula, on UVAinduced photoaging of human dermal fibroblasts and mouse skin via promoting Nrf2regulated antioxidant defense. Front. Pharmacol. 12:649820. doi:10.3389/fphar.2021.649820.
Mariati DE, Sudigdoadi S, Lesmana R, Khairani AF, Gunadi JW, Tarawan VM, Supratman U, Goenawan H. 2021. Robusta extract cream ameliorated ultraviolet Binduced wrinkle skin of mice by the regulation of epidermal thickness and inhibition of MMP1. Indones. Biomed. J. 13(1):84–90. doi:10.18585/inabj.v13i1.1428.
Mayr F, Möller G, Garscha U, Fischer J, Castaño PR, Inderbinen SG, Temml V, Waltenberger B, Schwaiger S, Hartmann RW, Gege C, Martens S, Odermatt A, Pandey AV, Werz O, Adamski J, Stuppner H, Schuster D. 2020. Finding new molecular targets of familiar natural products using in silico target prediction. Int. J. Mol. Sci. 21(19):1–18. doi:10.3390/ijms21197102.
Moon H, White AC, Borowsky AD. 2020. New insights into the functions of Cox2 in skin and esophageal malignancies. Exp. Mol. Med. 52(4):538–547. doi:10.1038/s1227602004122.
Mustafa G, Younas S, Mahrosh HS, Albeshr MF, Bhat EA. 2023. Molecular docking and simulationbinding analysis of plant phytochemicals with the hepatocellular carcinoma targets epidermal growth factor receptor and Caspase9. Molecules 28(8):3583. doi:10.3390/molecules28083583.
Nakamura Y, Mochamad Afendi F, Kawsar Parvin A, Ono N, Tanaka K, Hirai Morita A, Sato T, Sugiura T, AltafUlAmin M, Kanaya S. 2014. KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55(1):e7. doi:10.1093/pcp/pct176.
Noh EM, Park J, Song HR, Kim JM, Lee M, Song HK, Hong OY, Whang PH, Han MK, Kwon KB, Kim JS, Lee YR. 2016. Skin agingdependent activation of the PI3K signaling pathway via downregulation of PTEN increases intracellular ROS in human dermal fibroblasts. Oxid. Med. Cell. Longev. 2016:6354261. doi:10.1155/2016/6354261.
Noor F, Qamar MTU, Ashfaq UA, Albutti A, Alwashmi AS, Aljasir MA. 2022. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals 15(5):572. doi:10.3390/ph15050572.
Oh KK, Adnan M, Cho DH. 2021. Network pharmacologybased study to uncover potential pharmacological mechanisms of korean thistle (Cirsium japonicum var. maackii (maxim.) matsum.) flower against cancer. Molecules 26(19):5904. doi:10.3390/molecules26195904.
Pagani A, Aitzetmüller MM, Brett EA, König V, Wenny R, Thor D, Radtke C, Huemer GM, Machens HG, Duscher D. 2018. Skin rejuvenation through HIF1α modulation. Plast. Reconstr. Surg. 141(4):600e–607e. doi:10.1097/PRS.0000000000004256.
Pan W, Giovanardi I, Sagynova T, Cariola A, Bresciani V, Masetti M, Valgimigli L. 2023. Potent antioxidant and antityrosinase activity of butein and homobutein probed by molecular kinetic and mechanistic studies †. Antioxidants 12(9):176. doi:10.3390/antiox12091763.
Papaccio F, D’arino A, Caputo S, Bellei B. 2022. Focus on the contribution of oxidative stress in skin aging. Antioxidants 11(6):1121. doi:10.3390/antiox11061121.
Parisi M, Verrillo M, Luciano MA, Caiazzo G, Quaranta M, Scognamiglio F, Di Meo V, Villani A, Cantelli M, Gallo L, Altobelli GG, Poggi S, Spaccini R, Fabbrocini G. 2023. Use of natural agents and agrifood wastes for the treatment of skin photoaging. Plants 12(4):840. doi:10.3390/plants12040840.
Park JY, Ji YJ, Seo KH, Lee JY, Kim GS, Kang MH, Lee JH, Jang GY, Kim HD. 2021. Heat treatment improves uv photoprotective effects of licorice in human dermal fibroblasts. Processes 9(6):1040. doi:10.3390/pr9061040.
Que W, Chen M, Yang L, Zhang B, Zhao Z, Liu M, Cheng Y, Qiu H. 2021. A network pharmacologybased investigation on the bioactive ingredients and molecular mechanisms of Gelsemium elegans Benth against colorectal cancer. BMC Complement. Med. Ther. 21(1):99. doi:10.1186/s12906021032737.
Rohman A, Widodo H, Lukitaningsih E, Windarsih A, Rafi M, Nurrulhidayah AF. 2020. Review on in vitro antioxidant activities of curcuma species commonly used as herbal components in Indonesia. Food Res. 4(2):286–293. doi:10.26656/fr.2017.4(2).163.
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. 2014. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 6(1):13. doi:10.1186/17582946613.
Sadaqat M, Qasim M, Tahir ul Qamar M, Masoud MS, Ashfaq UA, Noor F, Fatima K, Allemailem KS, Alrumaihi F, Almatroudi A. 2023. Advanced network pharmacology study reveals multipathway and multigene regulatory molecular mechanism of Bacopa monnieri in liver cancer based on data mining, molecular modeling, and microarray data analysis. Comput. Biol. Med. 161:107059. doi:10.1016/j.compbiomed.2023.107059.
Salminen A, Kaarniranta K, Kauppinen A. 2022. Photoaging: UV radiationinduced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm. Res. 71(78). doi:10.1007/s00011 022015988.
Sharma MR, Mitrani R, Werth VP. 2020. Effect of TNFα blockade on UVBinduced inflammatory cell migration and collagen loss in mice. J. Photochem. Photobiol. B Biol. 213:112072. doi:10.1016/j.jphotobiol.2020.112072.
Sharma RR, Deep A, Abdullah ST. 2022. Herbal products as skincare therapeutic agents against ultraviolet radiationinduced skin disorders. J. Ayurveda Integr. Med. 13(1):100500. doi:10.1016/j.jaim.2021.07.016.
Solá P, Mereu E, Bonjoch J, CasadoPeláez M, Prats N, Aguilera M, Reina O, Blanco E, Esteller M, Di Croce L, Heyn H, Solanas G, Benitah SA. 2023. Targeting lymphoidderived IL17 signaling to delay skin aging. Nat. Aging 3(6):688–704. doi:10.1038/s43587023 00431z.
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny Stein T, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, GuanGolan Y, Kohn A, Rappaport N, Safran M, Lancet D. 2016. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinforma. 2016:1.30.1–1.30.33. doi:10.1002/cpbi.5.
Stevenson S, Thornton J. 2007. Effect of estrogens on skin aging and the potential role of SERMs. Clin. Interv. Aging 2(3):283–297. doi:10.2147/cia.s798.
Sundaram KI, Sarangi DD, Sundararajan V, George S, Mohideen SS. 2018. Poly herbal formulation with antielastase and antioxidant properties for skin antiaging. BMC Complement. Altern. Med. 18(1):33. doi:10.1186/s1290601820979.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, HuertaCepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Von Mering C. 2019. STRING v11: Proteinprotein association networks with increased coverage, supporting functional discovery in genomewide experimental datasets. Nucleic Acids Res. 47(D1):D607–D613. doi:10.1093/nar/gky1131.
Teng Y, Fan Y, Ma J, Lu W, Liu N, Chen Y, Pan W, Tao X. 2021. The PI3K/AKT pathway: Emerging roles in skin homeostasis and a group of nonmalignant skin disorders. Cells 10(5):1219. doi:10.3390/cells10051219.
Threskeia A, Sandhika W, Rahayu RP. 2023. Effect of turmeric (Curcuma longa) extract administration on tumor necrosis factor alpha and type 1 collagen expression in UVBlight radiated BALB/c mice. J. Appl. Pharm. Sci. 13(5):121–125. doi:10.7324/JAPS.2023.19358.
Tyas D, Wijayanti N, Nuringtyas T, Wahyuono S. 2024. Protective effects of Zingiber cassumunar Roxb. extract against UVBinduced oxidative stress in Wistar albino rats (Rattus novergicus Berkenhout, 1769). Indones. J. Biotechnol. 29:25–32. doi:10.22146/ijbiotech.90224.
Xiang C, Liao Y, Chen Z, Xiao B, Zhao Z, Li A, Xia Y, Wang P, Li H, Xiao T. 2022. Network pharmacology and molecular docking to elucidate the potential mechanism of Ligusticum chuanxiong against osteoarthritis. Front. Pharmacol. 13:854215. doi:10.3389/fphar.2022.854215.
Xu J, Wu G, Yu X, Dong Z, Yan J, Wu L, Bao L, Liu Q. 2023. Exploring the mechanism of MP gel against skin photoaging based on network pharmacology, molecular docking, and experimental validation. J. Cosmet. Dermatol. 22(3):1108–1123. doi:10.1111/jocd.15542.
Yeh SJ, Lin JF, Chen BS. 2021. Multiplemolecule drug design based on systems biology approaches and deep neural network to mitigate human skin aging. Molecules 26(11):3178. doi:10.3390/molecules26113178.
You L, Kim MY, Cho JY. 2021. Protective effect of Potentilla glabra in UVBinduced photoaging process. Molecules 26(17):1–19. doi:10.3390/molecules26175408.
Zhao J, Mo C, Shi W, Meng L, Ai J. 2021. Network pharmacology combined with bioinformatics to investigate the mechanisms and molecular targets of Astragalus RadixPanax notoginseng herb pair on treating diabetic nephropathy. Evidencebased Complement. Altern. Med. 2021:998098. doi:10.1155/2021/9980981.
Zheng J, Li Q, He L, Weng H, Su D, Liu X, Ling W, Wang D. 2020a. Protocatechuic acid inhibits vulnerable atherosclerotic lesion progression in older apoe −/− mice. J. Nutr. 150(5):1167–1177. doi:10.1093/jn/nxaa017.
Zheng Y, Pan C, Zhang Z, Luo W, Liang X, Shi Y, Liang L, Zheng X, Zhang L, Du Z. 2020b. Antiaging effect of Curcuma longa L. essential oil on ultravioletirradiated skin. Microchem. J. 154:104608. doi:10.1016/j.microc.2020.104608.
Zia A, Farkhondeh T, PourbagherShahri AM, Samarghandian S. 2021. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother. 134. doi:10.1016/j.biopha.2020.111119.
Zuhri UM, Purwaningsih EH, Fadilah F, Yuliana ND.2022. Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer. PLoS One 17(6 Jun):e0251837. doi:10.1371/journal.pone.0251837.
DOI: https://doi.org/10.22146/ijbiotech.93332
Article Metrics
Abstract views : 2153 | views : 696 | views : 481Refbacks
- There are currently no refbacks.
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.