Black seed oil inhibits the migration of triple‐negative breast cancer cells and regulates MMP‐9 expression

https://doi.org/10.22146/ijbiotech.96177

Ghina Lintangsari(1), Alma Nuril Aliyah(2), Gergorius Gena Maran(3), Adam Hermawan(4*), Edy Meiyanto(5)

(1) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
(2) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
(3) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
(4) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia; Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
(5) Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia; Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Black seed (Nigella sativa L.) is well known for its pharmacological properties, particularly its anticancer activity, with previous studies demonstrating its cytotoxic effects on several cell lines, such as A‐549, DLD‐1, MDA‐MB231, or HCT. This study aims to investigate the effects of black seed oil (BSO) on the migratory activity of 4T1 triple‐negative breast cancer (TNBC) cells, focusing on its bioactive properties. BSO was extracted via hydro‐distillation and analyzed for its phytochemical composition using gas chromatography–mass spectrometry (GC‐MS). The cytotoxicity of BSO and doxorubicin (Dox) was assessed using the MTT assay. The effects of BSO and Dox on cell migration and matrix metalloproteinase‐9 (MMP‐9) expression were evaluated using a scratch wound‐healing assay and gelatin zymography method respectively. Additionally, intracellular reactive oxygen species (ROS) levels were measured using 2’,7’‐dichlorofluorescin diacetate (DCFDA) staining. GC‐MS analysis identified p‐cymene as a major component of BSO, along with various other bioactive compounds. BSO exhibited low toxicity toward 4T1 cells, while its combination with Dox reduced cell viability in a dose‐dependent manner. Furthermore, BSO in combination with Dox inhibited cell migration and suppressed MMP‐9 expressions in 4T1 cells. BSO treatment also led to an increase in ROS levels. In conclusion, BSO exhibits potential anticancer properties by inhibiting cell migration and downregulating MMP‐9 expression, highlighting its possible therapeutic role in TNBC treatment.


Keywords


4T1; Migration; MMP‐9; Nigella sativa; Triple‐negative breast cancer

Full Text:

PDF


References

Ahlina FN, Nugraheni N, Salsabila IA, Haryanti S, Da’i M, Meiyanto E. 2020. Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a Co-­chemotherapeutic and anti­ageing agent. Asian Pacific J. Cancer Prev. 21(1):107–117. doi:10.31557/APJCP.2020.21.1.107.

Al­Rajhi A, Abdelghany T, Almuhayawi M, Alruhaili M, Saddiq A, Baghdadi A, AL Jaouni S, Albasri H, Waznah M, Alraddadi F, Selim S. 2024. Effect of ozonation on the phytochemicals of black seed oil and its anti­microbial, anti­oxidant, anti­inflammatory, and anti­neoplastic activities in vitro. Sci. Rep. 14:30445. doi:10.1038/s41598­024­81157­9.

Al­Sheddi ES, Farshori NN, Al­Oqail MM, Musarrat J, Al­Khedhairy AA, Siddiqui MA. 2014. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pacific J. Cancer Prev. 15(2):983–987. doi:10.7314/APJCP.2014.15.2.983.

Ali SR, Hussain ST, Ahsan SA, Shehzadi N, Ashfaq M, Bano S, Akhlaq M, Umrani JH. 2022. Black Seeds (Nigella sativa L.) ­kalonji: A brief review of its anticancer and anti­ Tumour qualities. Hamdard Med. 65(1):25–33.

Aliyah AN, Lintangsari G, Maran GG, Hermawan A, Meiyanto E. 2021. Cinnamon oil as a cochemotherapy agent through inhibition of cell migration and MMP­9 expression on 4T1 cells. J. Complement. Integr. Med. 19(4):921–928. doi:10.1515/jcim­ 2020­0165.

Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. 2021. Health beneficial and pharmacological properties of p-­cymene. Food Chem. Toxicol. 153:112259. doi:10.1016/j.fct.2021.112259.

Benkaci­Ali F, Baaliouamer A, Meklati BY, Chemat F. 2007. Chemical composition of seed essential oils from Algerian Nigella sativa extracted by microwave and hydrodistillation. Flavour Fragr. J. 22(2):148– 153. doi:10.1002/ffj.1773.

Bicas JL, Neri­Numa IA, Ruiz AL, De Carvalho JE, Pastore GM. 2011. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food Chem. Toxicol. 49(7):1610–1615. doi:10.1016/j.fct.2011.04.012.

Burits M, Bucar F. 2000. Antioxidant activity of Nigella sativa essential oil. Phyther. Res. 14(5):323–328. doi:10.1002/1099­1573(200008)14:5<323::AIDPTR621>3.0.CO;2­Q.

De Lima VT, Vieira MC, Kassuya CA, Cardoso CA, Alves JM, Foglio MA, De Carvalho JE, Formagio AS. 2014. Chemical composition and free radical­-scavenging, anticancer and anti­inflammatory activities of the essential oil from Ocimum kilimandscharicum. Phytomedicine 21(11):1298–1302. doi:10.1016/j.phymed.2014.07.004.

Elkady AI, Hussein RA, El­Assouli SM. 2015. Mechanism of action of Nigella sativa on human colon cancer cells: The suppression of AP­1 and NF­κB transcription factors and the induction of cytoprotective genes. Asian Pacific J. Cancer Prev. 16(17):7943– 7957. doi:10.7314/APJCP.2015.16.17.7943.

Gautam J, Banskota S, Lee H, Lee YJ, Jeon YH, Kim JA, Jeong BS. 2018. Down­regulation of cathepsin S and matrix metalloproteinase­9 via Src, a non­receptor tyrosine kinase, suppresses triple­negative breast cancer growth and metastasis. Exp. Mol. Med. 50(9):1–14. doi:10.1038/s12276­018­0135­9.

Harzallah HJ. 2012. Chemical composition, antibacterial and antifungal properties of Tunisian Nigella sativa fixed oil. African J. Microbiol. Res. 6(22):4675– 4679. doi:10.5897/ajmr11.1073.

Hosseinzadeh L, Soheili S, Ghiasvand N, Ahmadi F, Shokoohinia Y. 2018. Fatty acid mixtures from Nigella sativa protects PC12 cells from oxidative stress and apoptosis induced by doxorubicin. Pharm. Sci. 24(1):15–22. doi:10.15171/PS.2018.04.

Islam MT, Khan MR, Mishra SK. 2019. An updated literature­based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 19(2):115–129. doi:10.1007/s13596­019­00363­3.

Jabłońska­Trypuć A, Matejczyk M, and SR. 2016. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem. 31(sup1):177–183. doi:10.3109/14756366.2016.1161620.

Kang E, Lee DH, Jung YJ, Shin SY, Koh D, Lee YH. 2016. α­Pinene inhibits tumor invasion through down-regulation of nuclear factor (NF)­κB­regulated matrix metalloproteinase­9 gene expression in MDA­MB­ 231 human breast cancer cells. Appl. Biol. Chem. 59(4):511–516. doi:10.1007/s13765­016­0175­6.

Karagiannis GS, Condeelis JS, Oktay MH. 2018. Chemotherapy-­induced metastasis: Mechanisms and translational opportunities. Clin. Exp. Metastasis 35(4):269–284. doi:10.1007/s10585­017­9870­x.

Kazemi M. 2014. Phytochemical composition, antioxidant, anti­inflammatory and antimicrobial activity of Nigella sativa L. essential oil. J. Essent. Oil­Bearing Plants 17(5):1002–1011. doi:10.1080/0972060X.2014.914857.

Kumari S, Badana AK, Murali Mohan G, Shailender G, Malla RR. 2018. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights 13:1177271918755391. doi:10.1177/1177271918755391.

Larasati YA, Yoneda­Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY. 2018. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 8(1):1–13. doi:10.1038/s41598­018­20179­6.

Liao Z, Chua D, Tan NS. 2019. Reactive oxygen species: A volatile driver of field cancerization and metastasis. Mol. Cancer 18:65. doi:10.1186/s12943­019­0961­y.

Ma J, Peng C. 2024. Nigella sativa plant extract inhibits the proliferation of MDA­MB­231 breast cancer cells via apoptosis and cell cycle arrest. Bangladesh J. Pharmacol. 19(1):29–38. doi:10.3329/bjp.v19i1.71069.

Mahmoudvand H, Sepahvand A, Jahanbakhsh S, Ezatpour B, Ayatollahi Mousavi SA. 2014. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. J. Med. Mycol. 24(4):e155–61. doi:10.1016/j.mycmed.2014.06.048.

Marioli­Sapsakou GK, Kourti M. 2021. Targeting production of reactive oxygen species as an anticancer strategy. Anticancer Res. 41(12):5881–5902. doi:10.21873/anticanres.15408.

Mehraj T, Elkanayati RM, Farooq I, Mir TM. 2022. Chapter 4 ­ A review of Nigella sativa and its active principles as anticancer agents. Elsevier. p. 91–118.

Mileo AM, Miccadei S. 2016. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxid. Med. Cell. Longev. 2016:6475624. doi:10.1155/2016/6475624.

Mohammed SJ, Amin HH, Aziz SB, Sha AM, Hassan S, Abdul Aziz JM, Rahman HS. 2019. Structural characterization, antimicrobial activity, and in vitro cytotoxicity effect of black seed oil. Evidence-based Complement. Altern. Med. 2019:6515671. doi:10.1155/2019/6515671.

Mollazadeh H, Afshari AR, Hosseinzadeh H. 2017. Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: Involvement of apoptosis: ­ Black cumin and cancer­. J. Pharmacopuncture 20(3):158–172. doi:10.3831/KPI.2017.20.019.

Mori K, Uchida T, Yoshie T, Mizote Y, Ishikawa F, Katsuyama M, Shibanuma M. 2019. A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J. 286(3):459–478. doi:10.1111/febs.14671.

Mukhtar H, Qureshi AS, Anwar F, Mumtaz MW, Marcu M. 2019. Nigella sativa L. seed and seed oil: potential sources of high­-value components for development of functional foods and nutraceuticals/pharmaceuticals. J. Essent. Oil Res. 31(3):171– 183. doi:10.1080/10412905.2018.1562388.

Çınar r, Gıdık B, Dirican E. 2024. Determination of anticancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells. Molecular Biology Reports 51(1):491. doi:10.1007/s11033­024­ 09453­1.

Nurrachma MY, Maran GG, Putri NB, Esti YF, Hermawan A, Meiyanto E, Jenie RI. 2020. Fingerroot (Boesenbergia pandurata) extract inhibits proliferation and migration of 4T1 metastatic breast cancer cells. Indones. J. Cancer Chemoprevention 11(3):141–150. doi:10.14499/indonesianjcanchemoprev11iss3pp103­ 114.

Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ. 2015. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527(7577):186–191. doi:10.1038/nature15726.

amadani RD, Utomo RY, Hermawan A, Meiyanto E. 2018. Curcumin analog pentagamaboronon­ 0-­sorbitol inhibits cell migration activity of triple­negative breast cancer cell line. Indones. J. Cancer Chemoprevention 9(3):126–133. doi:10.14499/indonesianjcanchemoprev9iss3pp126­ 133.

Reczek CR, Chandel NS. 2017. The two faces of reactive oxygen species in cancer. Annu. Rev. Cancer Biol. 1:79–98. doi:10.1146/annurev­cancerbio­ 041916­065808.

Shokri H. 2016. A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi. Avicenna J. Phytomed. 6(1):21–33.

Toth M, Sohail A, Fridman R. 2012. Assessment of gelatinases (MMP­2 and MMP­9) by gelatin zymography. Methods Mol. Biol. 878:121–135. doi:10.1007/978­ 1­61779­854­2_8.

Usmani A, Mishra A, Arshad M, Jafri A. 2019. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with Nigella sativa oil against human hepatocellular carcinoma. Artif. Cells, Nanomedicine Biotechnol. 47(1):933–944. doi:10.1080/21691401.2019.1581791.

Vermot A, Petit­Härtlein I, Smith SM, Fieschi F. 2021. NADPH oxidases (Nox): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 10(6):890. doi:10.3390/antiox10060890.

Wisdom KM, Adebowale K, Chang J, Lee JY, Nam S, Desai R, Rossen NS, Rafat M, West RB, Hodgson L, Chaudhuri O. 2018. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9(1):4144. doi:10.1038/s41467­018­06641­z.

Xu Q, Li M, Yang M, Yang J, Xie J, Lu X, Wang F, Chen W. 2018. α­-pinene regulates miR­221 and induces G2/M phase cell cycle arrest in human hepatocellular carcinoma cells. Biosci. Rep. 38(6):BSR20180980. doi:10.1042/BSR20180980.

Zeller KS, Riaz A, Sarve H, Li J, Tengholm A, Johansson S. 2013. The role of mechanical force and ROS in integrin­dependent signals. PLoS One 8(5):e64897. doi:10.1371/journal.pone.0064897.

Zhang Y, Fan Y, Huang S, Wang G, Han R, Lei F, Luo A, Jing X, Zhao L, Gu S, Zhao X. 2018. Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer Sci. 109(12):3865–3873. doi:10.1111/cas.13808.

Zhu H, Sarkar S, Scott L, Danelisen I, Trush M, Jia Z, Li YR. 2016. Doxorubicin redox biology: Redox cycling, topoisomerase inhibition, and oxidative stress. React. Oxyg. Species p. 189–198. doi:10.20455/ros.2016.835.



DOI: https://doi.org/10.22146/ijbiotech.96177

Article Metrics

Abstract views : 22 | views : 4

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.