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ABSTRACT

Analytical models have been developed to diminish test procedures for product realization, but they have only
been partially successful in predicting the performance of battery systems consistently. The complex set of
interacting physical and chemical processes within battery systems has made the development of analytical models
of significant challenge. Advanced simulation tools are needed to be more accurately model battery systems which
will reduce the time and cost required for product realization. As an alternative approach begun, the development of
cell performance modeling using non-phenomenological models for battery systems were based on artificial neural
networks (ANN) using Matlab 7.6.0(R2008b). ANN has been shown to provide a very robust and computationally
efficient simulation tool for predicting state of charge for Lead Acid cells under a variety of operating conditions. In
this study, the analytical model and the neural network model of lead acid battery for electric vehicle were used to
determinate the battery state of charge. A precision comparison between the analytical model and the neural
network model has been evaluated. The precise of the neural network model has error less than 0.00045 percent.
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INTRODUCTION

The need to develop electric vehicles arises not
only due to the high price of international petroleum but
also for solving the worsening environment problems.
Energy management is the major key technology of
battery powered vehicle [1]. The increase of energy
density and efficiency, and accurate measurement of the
state of charge (SOC) are important research topics [2-
3]. Although many new electrochemical systems were
studied for this application, the lead acid battery is still a
leading candidate [4]. Measurement of the SOC of lead
acid battery in battery powered vehicle was studied by
electrochemical reaction [5]. The estimation of SOC of
lead acid battery is a key point of energy management
system in electric vehicle [6].

Many methods are used to improve the precision of
SOC. Generally, the methods for measuring the SOC of
the lead acid battery are: impedance method, and
conductance method or resistance method [7-8]. In the
previous study, the method was proposed to estimate
the SOC of the battery by measuring the AC ripples
during the charging state of the battery.

The internal resistance of the battery is used for the
parametric fitting model. This method may not be
accurate enough for the measurement of the SOC of the

lead acid battery in the electric vehicle because the
internal resistance of the battery is not a constant [9].
This method applied only for the batteries of the same
model are used for evaluating. This approach does not
work anymore if the battery has some differences. The
Coulometric method can measure the charge or
discharge current of battery to solve the above
disadvantages [10], because the Coulometric
measurement method uses the summation method for
the calculation, there will usually be several correction
factors added to minimize the error and used together
to determine the SOC. For example, during the
charging period, the terminal voltage is measured, the
rising slope of the voltage is measured too the end of
discharge voltage.

The Ampere hours algorithm is commonly
estimated the SOC. The battery capacity is calculated
by multiplying the current by time of discharge [11-12].
The residual capacity is calculated by initial capacity
minus capacity discharged.

Open circuit Voltage method is widely used in
SOC estimation of the battery. The terminal Voltage of
the battery is relevant with the SOC when the battery is
under no load [13]. However, in the battery condition
charge or discharge state is not open circuit, the SOC
is inaccurate. Open circuit Voltage method and Ampere
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hours algorithm together to achieve the SOC for electric
vehicle [14]. The open circuit method, loaded voltage
method and the Coulometric measurement method can
be combined to measure the SOC of the battery in the
battery powered vehicles [15].

Although the Coulometric method is convenient to
use, however it still has disadvantages. The
measurement of the battery is based on the actual
current and rated capacity, while battery capacity
depends on discharge current. The battery aging effect
will also reduce the capacity, if it is not corrected, an
error may occur. Modified Coulometric measurement
method uses the Coulometric measurement method as
the basis and considered the current additive effect and
the battery aging factor [16].

As for considering the battery aging factor and the
correction of its capacity, the correction of the SOC is
determined by using the slope of the voltage over time
during the battery discharge. During the initial period of
the discharge, the voltage of each battery is
approximately the same. While more than 70% of the
capacity is being discharged, the voltage of the severely
old battery will decrease drastically. Thus, such property
can be used to correct the SOC of the old battery
[15-17].

Neural network establishes a relationship between
input and output data, which uses voltage, current,
temperature as its input and the SOC as output. In order
to train this artificial neural network based model, the
data were collected after a series of the designed
experiments carried out using the battery evaluation and
testing system with the wide range of discharge current
and temperature [18-20]. The virtue of the method is that
it can be applied to the battery systems.

As mentioned above, the reaction of the electrode
of the battery is strongly and directly related to the SOC.
In this paper, the proposed measurement method of the
SOC of the lead acid battery is to use the basic theory of
electrochemistry to determine the electrochemical
reaction parameters related to the SOC. The research in
recent years emphasizes the electrodynamics of the
charge transfer reaction [16,21]. These effects are the
important factors that cause the conversion of chemical
energy into electrical energy. In this paper, the
electrochemical theory for these reactions of the
electrode is used to calculate the chemical parameters
for the electrode reaction and the circuit is also designed
to calculate the variation of the electrochemical
parameters of the battery to measure the SOC of the
lead acid battery. In this paper, not only the analytical
model is introduced, but also the neural network model
is discussed. In addition, the lead acid battery is used to
verify the precision of lead acid battery model.

EXPERIMENTAL SECTION

Materials

Lead acid battery type 46B24L produced by PT.
GS Battery. Meanwhile the structure of battery by Ying
et al from lead acid battery data bank was obtained and
employed as the virtual target [5].

Instrumentation

Mathematical Laboratory (Matlab) version
R2008b (developed by MathWorks, Natick,
Massachusetts) was employed to perform the
simulation procedures and developer of mathematical
computing. All computational simulations were
performed on a Window machine with Intel Dual Core
2GHz as the processors and 1 GB of RAM.

Procedure

SOC Algorithm for Lead Acid Battery Using
Electrochemistry
The cell reaction is a chemical reaction that
characterizes the battery. When the battery is
discharged, chemical compounds of higher energy
content are converted by this reaction into compounds
of lower energy content. Usually the released energy
would be observed as heat. But in a battery, the cell
reaction is divided into two electrode reactions, one of
them releases electrons and the other absorbs
electrons, and then the flow of electrons forms the
current that can be drawn from the battery. Thus, the
generation or consumption of energy connected to the
cell reaction is directly converted into an electric
current. The redox reaction of the electrodes of the
lead acid battery can be expressed as:

( ) 2( ) 2 4( ) 4( ) 2 ( )2 2 2s s aq s lPb PbO H SO PbSO H O   (1)

SOC Algorithm for Lead Acid Battery Using Neural
Network

Development of the battery has relied heavily on
the design approach can meet the requirements of an
application. Due to the intensive time of the testing is
needed; the design approach is expensive and has
difficulty to change variables. Interaction of physical
and chemical processes in the battery system has
made the development of analytical models to be a
significant challenge [1-6]. Simulations are made with a
model based design strategy for battery development,
beginning with the performance of Pb/PbO cells. As an
alternative approach, we have begun with development
of cell performance models using non-
phenomenological models for battery systems based
on artificial neural networks (ANN).
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Fig 1. Diagram of ANN model simulating a physical
system

Fig 2. Diagram of a multi-layered Back Propagation
network

The ANN can be used in a variety of frameworks to
simulate many types of system behavior including
electrochemical system. The ANN requires training data
to learn patterns of input/output behavior and it can be
used to simulate system behavior of in the training
space. This network done by interpolating specified
inputs among the training inputs to yield output that are
interpolations of training outputs.

The purpose of mapping ANN can be expressed
mathematically using the following input/output notation
and terminology. Suppose {x} represent a vector of
inputs system. The system will be simulated to operate
on the data in {x}, yielding an output vector {z}. There is
a functional relationship, {z} = g ({x}), for {z} and {x} with
the function g(.) is assumed to be deterministic but
unknown.

Since the ANN is built, so that it can also be used
to operate on the input {x} to yield {y}=h({x}). The
function h(.) is deterministic, it has a pre established
framework and the parameters {p}. The function h(.) will
be an approximation to the system function g(.). Given a
sequence of examples of input/output {xj} and {zj}, j =
1,…R. The parameters {p} of the ANN are adjusted to
minimize the error between actual system output {z} and
the ANN output {y}, when presented with the same input
{x}. This is achieved through a training process that
involves error minimization through the variation of the
parameters {p}. The first training is completed and
expected to be given the input {x} which is different from
that used during trainings. The ANN will yield outputs {y}
that are accurate estimations of the outputs {z} produced
by the system being modeled. The ANN serves as an
interpolator between the output vector as a function of

the position of the input vector. A diagram of this
process is shown in Fig. 1.

There are a number of ANN architectures
available for electrochemical simulation. Although there
are many types of ANN to solve the problem, the
method used to model of lead acid battery is
feedforward back propagation network (BPN). Fig. 2
shows the BPN network with an input layer, hidden
layer, and an output layer.

The operations in each neuron of a BPN are
shown in Equation (2). Where yk represents the output
of neuron k, while yj and wkj represent the output from
neuron j in the previous layer and the corresponding
weighting factor. The quantity θk is a bias or threshold
for offset in the neuron activation.

1

( )( )
N

k j kj k
j

y f y w 


 
  

 
 (2)

When an input is given to the BPN, it can be fed
forward through the entire network to get the output.
This output can be compared to the output exemplar,
and the ANN parameters can be adjusted to diminish
the difference between the ANN output and the training
output. The training of the BPN involves the error from
the output layer to the input layer. The training
procedure commonly known as the delta rule uses the
back propagated error to optimize the weights of the
network. Simulation of the battery system is developed
from simple constant load discharge to more complex
and practical simulations including variation load
pulses. Result of the model developments is presented
in the following discussion.

RESULT AND DISCUSSION

Electrochemistry Model Analysis And SOC
Estimation

The chemical energy of the battery is converted
into the maximum electrical energy, which can be
expressed by Gibbs energy. Meanwhile, the voltage of
the battery can be expressed by Nernst equation as
follows [22]:

2 4( )0

2 ( )

ln aq

l

H SORT
E E

nF H O
  (3)

where R is the gas constant, T is the temperature of
the battery.

When the current I is extracted and flown through
the battery, an electrochemical reaction with the
electrode will cause activation and concentration
polarization.

If the forward and reverse reaction constants are
represented by Kf and Kb, then the reaction rate can be
expressed by forward current if and reverse current ib
as follows:
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Fig 3. The relation between the concentration and specific gravity of the sulfuric acid

Fig 4. Analitycal model of the SOC at 2, 5, 10 and 15 ohms (T=25 °C)

Table 1. The relation between the SG and the SOC[5]
SOC (%) SG

100 1.33
75 1.3
50 1.27
25 1.24
0 1.21

f f Oi nAFK C

b b Ri nAFK C (4)

where CO and CR is the concentration of the solution on
the oxidation and reduction agent, whereas A is the
electrode surface area. In the balance state there is no
current generated, thus the electric potential in balance
can be obtained by:

0
0

0
ln lnf

e

b R

CKRT RT
E

nF K nF C
  (5)

Equation (5) can be used to express the Nernst equation
by including the concentration of H2SO4 as C0 and the
concentration of H2O as a CR. If the resistance of
electrolyte Rbi can be measured, and the battery current
with an external load can also be measured, then the
terminal voltage of the battery as:

0

bi

EP

V E IR

E IR

 

 
(6)

where REP represents the impedance generated by the
reaction of the electrode, then the terminal voltage of the
battery can obtain:

0 0ln
R

CRT
V E

nF C
  (7)

The electric circuit of the battery can be designed by
determine of C0 and CR, and then the SOC of the
battery can be obtained after obtaining the values of C0

and CR.
The measured voltage and current of the battery

during the experiment are determined to obtain the
CO/CR ratio. The measured concentration of the sulfuric
acid can be used to determine the specific gravity of
the electrolyte. Then the relation between the specific
gravity and the SOC can be used to obtain the SOC of
the battery. Fig. 3 shows the relation between the
concentration and the specific gravity. The relation
between the specific gravity (SG) and the SOC are
listed in Table 1[5].

Figure 4 shows the simulation of a constant load
discharge at 2, 5, 10, and 15 ohms. The simulation of
analytical model state of charge is able to provide very
good for loads between 2 and 15 ohms.

Neural Network Model Analysis and SOC
Estimation

The BPN was trained with 25 °C constant load
discharge data at 2, 5, 10 and 15 ohms. A simulation of
neural network diagram of this process is shown in
Fig. 5. Our next objective was to extend our predictions
to pulsed loads and variable temperature. As little
pulsed data were available at this point, isothermal and
constant load discharge data were used to train the BPN
in order to determine whether their usage could be
extended to pulsed load or pulsed temperature conditions.
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Fig 5. Neural network model of a constant load discharge at 2, 5, 10 and 15 ohms (T=25 °C)

Fig 6. Neural network model of a constant load discharge at -40 °C, 25 °C and 50 °C (load 5 ohm)

Table 2. Variation load and temperature data available
for ANN simulations.

Load (ohm) Temperatures (°C)
2 -40, 25, 50
5 -40, 25, 50

10 -40, 25, 50
15 -40, 25, 50

Specifically, the constant load discharge data available
for training are outlined in Table 2.

The hope is that these data could be used to train a
BPN which could be used to simulate pulse loads
between 2 and 15 ohms, with temperature variations
between -40 °C and 50 °C. Note, the independent
temporal variable has been converted from time to
current capacity used to introduce the normalization of
the temporal variable. The pulse load simulation was

performed in an attempt to identify how the battery
capacity can be generated varies according to load
conditions. The capacity of the battery cell is measured
to determine changes with load.

The simulated pulse also seems to approach
failure slightly before the experimental pulse, causing a
more rapid drop off at the knee. Testing with varied
pulsed load profiles in attempts to fully understand the
transition between load curves during pulse discharge
and to determine, if it is observed, the difference
between actual data and predicted behavior from a
result of cell to cell variabilities. To develop rule for
transition between temperatures, test are being run on
batteries in which only the various temperature under
constant load is shown in Fig. 6. In this case, more
likely as the resulting capacity will be followed for
transition, there are greater fluctuations in measured
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Fig 7. ANN comparison to experimental data when trained with analytical data at 5 ohm (T=25 °C)

Table 3. Simulation data of the lead acid battery type
46B24L.

Target (volt) Output NN
(volt)

Eror

12.95 12.6419 0.3081
12.33 12.6396 -0.3096
12.25 12.2606 -0.0106
12.23 12.2134 0.0166
12.19 12.1695 0.0205
12.15 12.1357 0.0143
12.09 12.0891 0.0009
12.05 12.0575 -0.0075
12.02 12.0455 -0.0255
11.97 12.0149 -0.0449
11.92 11.9137 0.0063
11.78 11.7235 0.0565
11.59 11.5828 0.0072
11.46 11.4918 -0.0318
9.679 9.6802 -0.0012
1.749 1.7458 0.0032
0.0012 0.0520 -0.0508
0.00029 -0.0128 0.01309
0.00000000159 -0.0170 0.017
0.000000000000000514 -0.0183 0.0183

capacity when moving from one temperature to another
especially for low temperature.

The next further tests are performed toward the
separate rules for transition between loads and
temperature, they are more completely understood. We
currently have experimental data taken under this type of
condition. Specifically, the temperature cycle consists of
a cold, an ambient and a hot level while the load is a
moderate on pulse level. Constant load discharge curves

are still being developed for the load range needed for
this test. Due to constant load discharge data were
available at three different temperatures, an arbitrary
simulation was done to predict the battery voltage
using a BPN network trained with load and temperature
inputs.

The important characteristics to note in this pulse
profile are the ability of the network to predict the
change in voltage from one temperature to another and
that more capacity can be delivered when moving from
a lower temperature to a higher temperature. An
example of the network prediction a reduction in
voltage moving from a higher to a lower temperature is
shown below near 11 Amp hours of capacity removed.
Here, the network predicts a reduction of about
0,320 volts as the temperature is lowered from 50 °C to
-40 °C. Near 19 Amp hours removed, the simulation
suggests that no voltage output from the cell as the
temperature be lowered from 50 °C to -40 °C, but it
shows that the capacity still exists when the
temperature is returned to ambient. These types of
responses shown in the simulation are clearly
representative of the battery behavior seen in analytical
model and further analysis with ANN will increase our
understanding of discharge behavior under both
constant and pulsed conditions.
As mentioned above, using ANN to model battery
systems offers a variety of advantages over
phenomenological models. Computational efficiency
and focus on overall cell performance rather than
specific processes are among the most significance.
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Analytical models, however, are able to provide
information regarding "local dynamics" that are more
difficult for ANN to capture when being trained over a
large inputs space. An analytical model has been
developed for the Pb/PbO cell, but it is computationally
very intensive and it can also take several hours to run.
In an attempt to take advantage of the strengths of both
analytical and ANN models, preliminary steps have been
taken to develop a "hybrid" model. Fig. 7 details the
results of our preliminary study using both the analytical
and ANN models to simulate the lead acid battery
system. Discharge data used to train the BPN had a
slightly lower voltage level than the actual pulsed data at
that load, which is reflected in this simulation.

A neural network was used to model cell
impedance for input to the analytical model because
developing a functional relationship for this parameter
would be very difficult. By using the ANN model of the
cell impedance, the analytical model was used to
generate constant load discharge curves at 2 until 15
ohms. These analytical data were used to train the BPN
within the 2–15 ohm input space at 25 °C. The trained
BPN was used to simulate a discharge at 5 ohm. The
discharge data available for training are outlined in Table
3.

There are two classes of uncertainty of issues that
affect the specification and use of ANN. First, because
the ANN is a non-phenomenological model of system
behavior, the map that is learned by an ANN cannot
precisely replicate the map that is the source of its
input/output exemplars. That is, the ANN is an uncertain
representation of the source map. The training
techniques used to identify the parameters of ANN are
designed to minimize the error with this origin. In
practice, there is always a fact that the input/output
exemplars presented to an ANN during training, contains
measurement noise. This precludes the possibility that
the exemplars exactly represent system behavior. The
problem is mitigated by the fact that training procedures
for ANN typically yield models which average through
the measurement noise yielding an average model of
system input/output behavior. Secondly, uncertainty
issue regarding the use of ANN. Under certain
circumstances, the inputs to an ANN may be random
variables or random processes. In this case, the inputs
map to random output, as they would with any
deterministic map. The ANN can be used in the same
way where a phenomenological model is used to
establish the probability distribution of one or more
random output given information on random inputs. In
fact, because of its relative, accuracy, and computational
efficiency, ANN sometimes used as substitutes for
analytical models where numerous model runs are
required.

CONCLUSION

The reason for using ANN to simulate the system
behavior is that they provide accurate estimations of
system behavior and are much more computationally
efficient than the phenomenological models. Artificial
neural networks are inductive models for simulating
input/output mapping with certain advantages over
analytical models, especially for complex systems.
Among these advantages are the ability to avoid
making measurement of hard to determine physical
parameters or having to understand cell processes
sufficiently to write mathematical functions describing
their behavior. The behavior of system with ANN is
learning based on training by providing examples of
measuring output for various input conditions. In the
battery case, the inputs can include many factors, such
as the chemistry, state of charge, load profile, size,
temperature, and the environment while the output may
be in its voltage, current, or capacity. The ANN is
efficiently accomplishing this simulation without
extensive identification of physical parameters such as
cell impedance or diffusion characteristics required in
parametric models. When using and modeling battery
systems with ANN, time consumption and difficult
measurements of the fundamental cell parameters are
not necessary since only electrical performance data
under the conditions of interest are used for training.

These initial efforts on battery modeling have
proven to be very effective, and more complex
simulations of battery behavior will be performed.
Additional tools like genetic algorithm and/or genetic
programming may be used to establish more accurate
transition rules. With advanced study of ANN modeling
and further development of the parametric model,
additional simulations can be performed using the
hybrid model to help efficient design and optimize
robust battery systems.

By means of analytical and neural network model
analysis, a precision of comparison of the SOC battery
have been evaluated. Comparison between
experimental data and calculated data concluded on
proposed method. The precise of the neural network
model has error less than 0,00045 percent. The result
shows that the precision neural network model is good
and very accurate.
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