LATTICE ENERGY DETERMINATION AND MOLECULAR SIMULATION OF PEROVSKITE OXIDES

Penentuan Energi Kisi dan Simulasi Molekuler Oksida Perovskit

Hellna Tehubijuluw¹ and Ismunandar^{2,*}

¹ Department of Chemistry, Faculty of Mathematics and Natural Science, State University of Pattimura, Ambon, Jl. Ir. M. Putuhena, Poka, Ambon 97123

> ²Department of Chemistry, Institute Technology of Bandung, JI.Ganesha No.10 Bandung 40132

> > Received 5 May 2008; Accepted 23 June 2008

ABSTRACT

Determination of lattice energy, U, is an important work for ionic compounds, due to it is the driving force in the compounds formation. The objective this work are twofold, firstly to determine lattice energy of perovskite oxide using an approximate equation and compare lattice energy from the resulted simple equation and molecular simulation results. The perovskite oxides used on this study were rare-earth orthoferite (LnFeO₃) and aluminate (LnAIO₃). These ionic terner compounds adopt space group Pbnm or R-3c. Lattice energy of perovskite oxides were calculated using Glasser, (G), Glasser-Jenkins, (GJ), and Yoder-Flora, (YF) equations. Plots of Born-Haber lattice energies (U(BHC)) vs. U(G), U(GJ) and U(YF) resulted in $R^2 = 0.8872$, 0.5919, and 0.9982. Thus the obtained best fit was U(BHC) vs. U(YF). The simple equation describing the best plot wasU_{perovskite} oxide =[1,0579U(YF) - 835,06] kJ/mol. Molecular simulation method has also been carried out to determine lattice energy and the obtained results were compared with those obtained from simple lattice energy equation, good agreement were obtained in these two oxides series. The obtained structural parameters also agreed well with those obtained from X-ray diffraction studies.

Keywords: lattice energy, perovskite oxides, lattice energy equation, and molecular simulation

PENDAHULUAN

Perovskit mempunyai rumus umum ABO_3 dan memiliki struktur ideal kubus, grup ruang Pm3m [1]. Dalam notasi ABO_3 , terdapat 3 atom yang berbeda, atom A dan B memiliki kombinasi kation yang jumlah bilangan oksidasinya enam: +1 dan +5; +2 dan +4; +3 dan +3 serta atom O bermuatan -2. Kation A biasanya merupakan kation dengan ukuran yang lebih besar dibandingkan dengan kation B.

Hal ini misalnya dapat dijumpai pada $CaTiO_3$ dimana jari-jari $Ca^{2+} = 1,32$ Å dan $Ti^{4+} = 0,75$ Å [2]. Koordinasi geometri dari kation B berbentuk oktahedral,

Gambar 1. Struktur Perovskit. Kation A berada di tengah kubus koordinat ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$), B terletak di pojok kubus (0,0,0) dan O berada di rusuk [($\frac{1}{2}, 0, 0$); (0, $\frac{1}{2}, 0$); (0,0, $\frac{1}{2}$)]

sedangkan kation A berbilangan koordinasi duabelas. Struktur dari oksida perovskit seperti terlihat pada Gambar 1.

Perovskit merupakan kelompok oksida ionik yang saat ini banyak disintesis. Beragamnya aplikasi dan masih aktifnya usaha eksplorasi sintesis perovskit baru menyebabkan penentuan energi kisi senyawa berstruktur perovskit penting dilakukan. Oleh karena itu diperlukan suatu rumusan yang sederhana dan dapat dengan cepat digunakan untuk memprediksi secara khusus energi kisi oksida perovskit.

Glasser berhasil menentukan energi kisi pada berbagai senyawa ionik biner yang diilhami oleh suksesnya Kapustinskii dalam menyederhanakan persamaan Born-Mayer [3]. Penentuan energi kisi pada senyawa ionik kompleks, Glasser memasukkan konsep kekuatan ionik dan jarak rata-rata kation-anion dalam struktur dengan memakai jari-jari ion (Goldschmidt) koordinasi enam sebagai berikut:

$$U = -\frac{1213.9}{\langle r \rangle} \left(1 - \frac{0.345}{\langle r \rangle} \right) \sum n_{k} z_{k}^{2}$$
(1)

di mana 1213,9 (kJ/mol Å) = faktor konversi elektrostatik, <*r>* = jarak rata-rata kation-anion dalam struktur, yakni rata-rata dari penjumlahan jari-jari ion Goldscmidt koordinasi enam; 0,345 adalah konstanta tolakan; dan $\Sigma n_k z_k^2$; kekuatan ion ini menggambarkan kekuatan interaksi antara kation-kation dengan anion-

^{*} Corresponding author. Tel/Fax : +62-22-2504154 Email address : ismu@chem.itb.ac.id

anion (sama dengan kekuatan ionik pada teori kimia larutan dari Debye dan Huckel; istilah ini belum umum untuk kimia padatan) [3].

Glasser dan Jenkins mengenalkan istilah energi potensial, U_{POT} [4] yang menggambarkan seluruh energi sebagai hasil interaksi antar muatan dalam kisi. Harga U_{POT} ini merupakan hasil koreksi energi kisi terhadap sumbangan derajat kebebasan (vibrasi, rotasi, dan translasi) ion-ion [5]. Menurut mereka, terdapat korelasi yang dekat antara harga rata-rata jarak kation-anion dengan distribusi muatan dalam struktur senyawa ionik kompleks. Persamaan yang mereka ajukan sebagai berikut:

$$U_{POT} = AI \left(\frac{2I}{V_m}\right)^{V_3}$$
(2)

di mana V_m adalah volume satuan rumus dalam sel satuan; *I* = kekuatan ion = $\frac{1}{2}\Sigma n_k z_k^2$.

Energi kisi yang diperoleh melalui siklus Born-Haber menurut Glasser dan Jenkins harus dikonversikan kedalam persamaan energi potensial kisi sebagai berikut [5] :

$$U_{POT}\left(M_{p}X_{q}\right) = \left|\Delta H_{L}^{\circ}\right| - \left[p\left(\frac{n_{M}}{2} - 2\right) + q\left(\frac{n_{X}}{2} - 2\right)\right]RT \quad (3)$$

dimana, $n_{\rm M}$ dan $n_{\rm X}$ tergantung pada ion-ion M^{Q+} dan X^{*p*-} yang mempunyai nilai 3, 5, dan 6 masing-masing untuk ion monomolekuler, linier, dan polimolekuler. Sedangkan untuk *p* dan *q* adalah jumlah masing-masing atom dalam senyawa M*p*X*q*.

Yoder dan Flora telah merumuskan energi kisi berdasarkan siklus Born-Haber *U*(BHC) pembentukan senyawa-senyawa ionik kompleks [6]. Dari penelitian tersebut telah didapatkan kesimpulan bahwa pada pembentukan garam rangkap dari garam-garam sederhananya hanya menghasilkan perubahan entalpi yang sangat kecil. Perubahan entalpi yang sangat kecil ini membawa kepada istilah yang sangat kecil pula antara energi kisi garam rangkap dengan jumlah energi kisi garam-garam sederhana pembentuknya (atau yang diasumsikan) [6]. Persamaannya sebagai berikut:

$$U(BHC)_{garam rangkap} = \sum U(BHC)_{garam yang diasumsikan}$$
 (4)

Sampai saat ini belum ada kajian secara khusus perihal prediksi energi kisi oksida-oksida yang berstruktur perovskit. Ketiga persamaan energi kisi yang berlaku untuk senyawa ionik kompleks tersebut masih perlu diuji keberlakuannya terhadap senyawa oksida perovskit. Sebagai kelanjutan usaha pencarian persamaan empiris energi kisi oksida [7], dilakukan pencarian rumusan energi kisi yang berlaku pada senyawa oksida perovskit. Dalam pekerjaan ini juga dilakukan perbandingan energi kisi dari persamaan sederhana dengan hasil simulasi molekuler.

METODE PENELITIAN

Langkah-langkah penelitian yang dilakukan sebagai berikut. Pertama, menentukan energi kisi oksida-oksida perovskit dalam hal ini golongan lantanoid ferat dan aluminat dengan siklus Born-Haber, U(BHC); Kedua, menghitung nilai energi kisi oksidaoksida perovskit golongan lantanoid ferat dan aluminat persamaan dengan Glasser, *U*(G), Glasserdan Yoder-Flora, U(YF), Jenkins, U(GJ), hasilnya dibandingkan (dalam % selisih) dan diplotkan terhadap U(BHC); Ketiga, mempertimbangkan keberlakuan penggunaan ketiga persamaan tersebut; Keempat, mencari korelasi paling dekat dan aplikatif di antara ketiga persamaan tersebut terhadap hasil perhitungan dengan siklus Born-Haber; Kelima, simulasi molekuler dengan perangkat lunak GULP dengan sistem operasi linux. Hasil simulasi ini kemudian dibandingkan dengan hasil energi kisi persamaan sederhana.

Dari siklus Born-Haber seperti pada Gambar 2, energi kisi Born-Haber dari oksida perovskit, $U(BHC)_{OP}$, dapat dihitung dengan persamaan (5) sebagai berikut:

$$U(BHC) = \sum \Delta H_{atom} + \sum \Delta H_{ion} + \sum \Delta H_{aff} - \Delta H_{f}^{\circ} OA - \Delta H_{f}^{\circ} OB - \Delta H_{f} ox$$
(5)

di mana ΔH_{atom} , ΔH_{ion} , dan ΔH_{aff} secara berturut-turut merupakan entalpi atomisasi, ionisasi, dan afinitas tiaptiap unsur pembentuk senyawa oksida perovskit; $\Delta H_{\text{f}}^{\circ}$ OA dan ΔH_{f}° OB masing-masing adalah entalpi pembentukan standar oksida logam A dan B; $\Delta H_{\text{f}}^{\circ}$ ox adalah entalpi pembentukan oksida perovskit dari oksida-oksida binernya.

Perhitungan simulasi molekuler tidak dilakukan terhadap semua perovskit golongan lantanoid aluminat mengingat terbatasnya data posisi atom yang lengkap dari oksida perovskit tersebut. Simulasi dilakukan dengan menggunakan perangkat lunak GULP [8]. Prosedur simulasi didasarkan atas minimisasi energi kisi dengan memberikan spesifikasi potensial interaksi yang menggambarkan energi sistem sebagai fungsi koordinat atom. Interaksi tersebut dibagi atas interaksi jangka panjang Coulombic dan jangka pendeknya berupa tumpang tindih elektron (tolakan Pauli) dan gaya dispersi (Van der Waals). Parameter potensial yang digunakan dalam pekerjaan ini adalah nilai yang ada di literatur yang daftar lengkapnya ada di halaman web GULP (gulp.curtin.edu.au).

HASIL DAN PEMBAHASAN

Penetapan energi kisi standar U(BHC) oksida perovskit pada oksida golongan lantanoid ferat dan aluminat melalui siklus Born-Haber, diawali dengan tabulasi data perubahan entalpi pembentukan, $\Delta H_{f}ox$, $LnFeO_3$ dan $LnAIO_3$ (Ln = unsur-unsur lantanida) dari oksida-oksida binernya yaitu Ln_2O_3 , Fe₂O₃, dan Al₂O₃ yang merupakan hasil penelitian yang dilakukan oleh Navrotsky dan Kanke [9]. Data hasil penelitian ini menjadi acuan untuk mencari energi kisi standar U(BHC) oksida perovskit golongan lantanoid ferat dan aluminat. Mengingat hanya diperoleh data perubahan entalpi pembentukan, ΔH_fox , dari oksida-oksidanya maka untuk menentukan energi kisi standar perlu

Tabel 1.	Tabulasi perhitungan	energi kisi lantanoid ferat da	n aluminat vang dihit	ung dengan siklus Born-Habe
laber I.		energi kisi lantanolu rerat ua	n alumnal yang umit	ung dengan sikius donn-had

Perovskit ^a	Komponen Oksida A dan B ^b	<i>∆H_fox</i> (ABO _{3(s)}) ^c kJ/mol	<i>∆H</i> f (ion-ion) ^d kJ/mol	<i>∆Hf</i> ⁰ (A ₂ O _{3(s)}) ^e kJ/mol	<i>∆Hf</i> ⁰ (B ₂ O _{3(s)}) ^f kJ/mol	<i>∆H⊾^{og}</i> kJ/mol	<i>U</i> (BHC) ^h kJ/mol
LaFeO ₃	1/2La2O3 + 1/2 Fe2O3	-44,35	12135	-1793,7	-824,2	-13399	13405
$PrFeO_3$	1/2 Pr ₂ O ₃ + 1/2Fe ₂ O ₃	-48,53	12232	-1809,6	-824,2	-13500	13506
$NdFeO_3$	1/2 Nd ₂ O ₃ + 1/2Fe ₂ O ₃	-44,35	12272	-1807,9	-824,2	-13544	13550
SmFeO₃	1/2 Sm ₂ O ₃ +1/2Fe ₂ O ₃	-44,35	12327	-1823	-824,2	-13606	13612
EuFeO ₃	1/2 Eu ₂ O ₃ + 1/2Fe ₂ O ₃	-44,35	12460	-1651,4	-824,2	-13653	13659
GdFeO ₃	1/2 Gd ₂ O ₃ + 1/2Fe ₂ O ₃	-44,35	12397	-1819,6	-824,2	-13675	13681
TbFeO ₃	1/2 Tb ₂ O ₃ + 1/2 Fe ₂ O ₃	-40,17	12429	-1865,2	-824,2	-13734	13740
DyFeO ₃	1/2 Dy ₂ O ₃ + 1/2Fe ₂ O ₃	-35,98	12437	-1863,1	-824,2	-13745	13751
HoFeO₃	1/2 Ho ₂ O ₃ + 1/2 Fe ₂ O ₃	-35,98	12474	-1880,7	-824,2	-13790	13796
$ErFeO_3$	1/2 Er ₂ O ₃ + 1/2 Fe ₂ O ₃	-35,98	12500	-1897,9	-824,2	-13825	13831
TmFeO₃	1/2 Tm ₂ O ₃ + 1/2Fe ₂ O ₃	-27,61	12526	-1888,7	-824,2	-13855	13861
YbFeO₃	1/2 Yb ₂ O ₃ + 1/2Fe ₂ O ₃	-23,43	12595	-1814,6	-824,2	-13891	13897
LuFeO₃	1/2 Lu ₂ O ₃ + 1/2 Fe ₂ O ₃	-19,25	12563	-1878,2	-824,2	-13895	13901
LaAlO₃	1/2 La ₂ O ₃ + 1/2 Al ₂ O ₃	-63,17	11907	-1793,7	-1675,7	-13579	13585
NdAIO ₃	1/2 Nd ₂ O ₃ + 1/2 Al ₂ O ₃	-41,36	12044	-1807,9	-1675,7	-13744	13750
SmAlO ₃	1/2 Sm ₂ O ₃ + 1/2 Al ₂ O ₃	-37,55	12099	-1823	-1675,7	-13811	13817
EuAlO ₃	1/2 Eu2O3+ 1/2 Al2O3	-30,52	12232	-1651,4	-1675,7	-13865	13871
GdAlO ₃	1/2 Gd ₂ O ₃ + 1/2Al ₂ O ₃	-32,33	12169	-1819,6	-1675,7	-13884	13890
DyAlO ₃	1/2 Dy ₂ O ₃ + 1/2 Al ₂ O ₃	-21,39	12209	-1863,1	-1675,7	-13957	13963

^a Oksida perovskit yang dipilih adalah (A³⁺)(B³⁺)O₃

^b Komponen oksida adalah reaktan pembentuk ABO_{3(s)} dengan asumsi tanpa mengalami perubahan bilangan oksidasi

^c Entalpi pembentukan oksida perovskit untuk $Ln FeO_3$ dan $Ln AIO_3$ diambil dari publikasi [9]

^d Entalpi pembentukan ion-ion $A^{m_{+}}_{(g)}$, $B^{n_{+}}_{(g)}$, dan $3O^{2}_{-(g)}$ dari $A_{(s)}$, $B_{(s)}$, dan $3/2O_{2(g)}$; m = n

Entalpi pembentukan oksida logam A [10]

^f Entalpi pembentukan oksida logam B. [10]

⁹ Entalpi kisi oksida perovskit diperoleh melalui siklus Born-Haber. Data atomisasi dan ionisasi, [11]

^h Hasil konversi entalpi kisi menjadi energi kisi, diperoleh melalui persamaan 3. Rumusan konversi dapat dilihat pada publikasi [5]

Perovskit	a (Å)	b (Å)	с (Å)	V _m /nm³	<i>U</i> (BHC) kJ/mol	<i>U</i> (GJ) kJ/mol	Selisih terhadap <i>U</i> (BHC) %
LaFeO ₃	5,556(1)	5,565(1)	7,862(1)	0,0608	13405	14098	5,169
PrFeO₃	5,482(1)	5,578(1)	7,786(1)	0,0595	13506	14195	5,101
NdFeO ₃	5,453(1)	5,584(1)	7,768(1)	0,0590	13550	14235	5,052
SmFeO₃	5,400(1)	5,597(1)	7,711(1)	0,0583	13612	14295	5,016
Eu FeO ₃	5,372(1)	5,606(1)	7,685(1)	0,0578	13659	14335	4,953
GdFeO ₃	5,349(1)	5,611(1)	7,669(1)	0,0575	13681	14356	4,934
TbFeO ₃	5,326(3)	5,602(3)	7,635(3)	0,0570	13740	14397	4,785
DyFeO ₃	5,302(3)	5,598(3)	7,623(3)	0,0565	13751	14439	5,006
HoFeO ₃	5,278(3)	5,591(3)	7,602(3)	0,0560	13796	14482	4,971
ErFeO ₃	5,263(3)	5,582(3)	7,591(3)	0,0558	13831	14503	4,860
TmFeO₃	5,251(3)	5,576(3)	7,584(3)	0,0555	13861	14525	4,788
YbFeO ₃	5,233(3)	5,557(3)	7,570(3)	0,0550	13897	14568	4,829
LuFeO ₃	5,213(3)	5,547(3)	7,565(3)	0,0548	13901	14590	4,957
LaAlO ₃	5,365(1)	5,365(1)	13,111(3)	0,0545	13585	14612	7,561
NdAlO ₃	5,322(2)	5,322(2)	12,929(5)	0,0528	13750	14794	7,365
SmAlO ₃	5,285	5,290	7,473	0,0523	13817	14817	7,236
EuAlO ₃	5,271	5,292	7,458	0,0520	13871	14840	6,988
GdAlO ₃	5,247	5,304	7,447	0,0518	13890	14864	7,012

Tabel 2. Analisis perhitungan energi kisi oksida perovskit golongan lantanoid ferat dan aluminat dengan menggunakan persamaan Glasser-Jenkins beserta persentase selisihnya dengan energi kisi pada siklus Born-Haber. Sumber data parameter sel [12,13].

dibuat siklus Born-Haber oksida perovskit seperti terlihat pada Gambar 2.

Dalam penentuan energi kisi standar U(BHC)digunakan persamaan (5) selanjutnya perhitungan U(BHC) oksida perovskit (A^{3+})(B^{3+})O₃ golongan lantanoid ferat dan aluminat dengan persamaan (5) dikoreksi menjadi energi potensial berdasarkan persamaan (3). Dengan menggunakan persamaan (3), diperoleh energi kisi berdasarkan siklus Born-Haber U(BHC) oksida perovskit pada golongan lantanoid ferat dan aluminat hasilnya seperti tertera pada Tabel 1.

Pada penentuan energi kisi oksida perovskit lantanoid ferat dan aluminat dengan pemakaian persamaan Glasser-Jenkins seperti tertera pada Tabel 2 dan hasil korelasi *U*(BHC) dengan *U*(GJ) terlihat pada Gambar 3 menunjukkan selisih yang lebih besar daripada *U*(BHC) *vs U*(G). *Plotting* secara terpisah untuk oksida perovskit lantanoid ferat dan aluminat juga dibuat, seperti terlihat pada Gambar 4 dan Gambar 5. *Plotting* terpisah untuk ferat dan aluminat masingmasing mempunyai korelasi yang baik dibandingkan dengan *plotting* gabungan kedua oksida perovskit. Hal ini mungkin disebabkan oleh adanya perbedaan karakter ikatan yang kemudian berakibat pada perbedaan energi kisi yang dihasilkan dan persamaan Glasser-Jenkins sangat dipengaruhi oleh perbedaan ini.

Gambar 3. *U*(BHC) vs *U*(GJ) pada oksida perovskit lantanoid ferat dan aluminat.

 $U(GJ)/ kJ mol^{-1}$

Gambar 5. *U*(BHC) vs *U*(GJ) pada oksida perovskit lantanoid aluminat

Gambar 6. Ilustrasi gaya tolakan antara O–O pada oktahedral BO_6 yang menambah faktor tolakan,R. Bertambahnya gaya tolakan antar atom O diberi tanda (\leftrightarrow)

Gambar 7. U(BHC) vs U(YF) pada oksida perovskit lantanoid ferat dan aluminat

Dalam persamaan Glasser-Jenkins ada nilai <r> yang merupakan jarak antara kation dan anion, faktor tolakan, R, dan faktor batasan, L (faktor yang menggambarkan kompresibilitas struktur). Faktor tolakan pada perumusan mereka, berbanding lurus dengan energi kisi, U, sehingga kenaikan kekuatan tolakan yang terjadi pada oksida perovskit akan terjadi bukan hanya pada jarak pemisahan antar inti kationanion, tetapi juga pada anion-anion dan kation-kation.

Pada kasus oksida perovskit yang terdistorsi, jarak 12 A – O dibedakan menjadi delapan tetangga terdekat pertama dan empat tetangga terdekat kedua sehingga faktor tolakan semakin kuat antar atom oksigen yang berdekatan pada oktahedral seperti diilustrasikan pada Gambar 6. Diilustrasikan juga pada Gambar 6, faktor tolakan, *R*, yang bertambah besar pada interaksi atom O dengan atom O yang diberi tanda (\leftrightarrow) karena jaraknya lebih dekat dibandingkan dengan jarak interaksi atom O dengan atom O pada oktahedral yang posisi atom oksigen saling berjauhan. Posisi atom oksigen pada oktahedral yang jaraknya lebih renggang atau lebih jauh, hal ini akan mengurangi nilai faktor batasan (faktor kompresibilitas), *L*

Yoder dan Flora mengusulkan bahwa energi kisi mineral-mineral ionik kompleks dapat dihitung dengan memperlakukannya sebagai gabungan energi kisi masing-masing jumlah mol garam-garam tunggal penyusunnya [6]. Perhitungan energi kisi oksida perovskit lantanoid ferat dan aluminat dengan menggunakan persamaan Yoder-Flora persamaan (4) $U(YF)_{OP} = \sum U(BHC)_{OA} + \sum U(BHC)_{OB}$ di mana (OP, OA, dan OB secara berturut-turut merupakan singkatan dari oksida perovskit, oksida logam A dan oksida logam B) menghasilkan korelasi dengan U(BHC) seperti *plotting*-nya pada Gambar 7.

Persentase selisih U(BHC) dengan U(YF) yang diperoleh antara 0,1367 % - 0,4637 %. Hasil yang diperoleh tersebut membuktikan bahwa persamaan Yoder-Flora pada oksida perovskit paling akurat, menghasilkan rata-rata selisih kurang dari 1 %. Hasil yang serupa telah diperoleh juga dalam penelitian Yoder - Flora pada sejumlah mineral oksida dan Suhendar-Ismunandar pada oksida piroklor [6,7]. pada Keakuratannya menyarankan bahwa pembentukan oksida perovskit (juga pada oksidaoksida ion kompleks yang lain), dari oksida-oksida pembentuknya melibatkan perubahan entalpi yang sangat kecil [6.9]. Persamaan linier vang diperoleh dari hasil plotting U(BHC) vs U(YF) pada Gambar 7 adalah [U(BHC)= 1,0579U(YF) - 835,06] kJ/mol. Persamaan ini dapat digunakan sebagai acuan dalam menentukan energi kisi oksida perovskit lain. Atau secara umum energi kisi oksida perovskit berdasarkan pada penelitian ini dirumuskan:

 $UABO_3 = [1,0579(\Sigma U(BHC) \text{ Oksida A } + \Sigma U(BHC) \text{ Oksida B}) - 835,06] \text{ kJ/mol.}$

Energi kisi dihitung dengan menggunakan data hasil percobaan difraksi sinar X [12,13] seperti parameter sel a, b, c, ortorombik serta posisi atom dalam sel satuan dan potensial intermolekuler kationanion dalam senyawa. Hasil perhitungan energi kisi oksida perovskit lantanoid ferat dan aluminat serta perhitungan parameter hasil difraksi sinar X dengan simulasi GULP seperti tertera dalam Tabel 3 dimana terlihat bahwa selisih nilai parameter sel hasil studi difraksi sinar X dengan perhitungan simulasi GULP sangat kecil. Selisih yang didapat pada penelitian ini identik dengan selisih hasil perhitungan parameter sel yang dilaporkan oleh Islam (2002) pada oksida perovskit LaGaO₃, LaCoO₃, dan CaZrO₃ dengan program simulasi molekuler yang sama [14]. Hal ini

Parameter	Parameter	Percobaan	Perhitungan	% Selisih
PrFeO ₃	a (Å)	5,482(1)	5,447872	-0,62
	b (Å)	5,578(1)	5,561835	-0,29
	c (Å)	7,786(1)	7,704688	-1,04
	α, β, γ (derajat)	90	90	
	Energi Kisi (kJ/mol)		13816	
NdFeO₃	a (Å)	5,453(1)	5,429638	-0,43
	b (Å)	5,584(1)	5,560247	-0,43
	c (Å)	7,768(1)	7,685633	-1,06
	α, β, γ (derajat)	90	90	
	Energi Kisi (kJ/mol)		13845	
EuFeO ₃	a(Å)	5,372 (1)	5,346477	-0,48
Ũ	b (Å)	5,606(1)	5,454884	-2,70
	c (Å)	7,685(1)	7,760262	0,98
	$\alpha.\beta.\gamma$ (deraiat)	90	90	,
	Energi Kisi (kJ/mol)		13630	
GdFeO₂	a(Å)	5,349(1)	5,272740	-1.43
	$b(\mathbf{A})$	5.611(1)	5.331009	-4,99
	c(A)	7,669(1)	7,507759	-2.10
	$\alpha \beta \gamma$ (deraiat)	90	90	2,10
	Energi Kisi (k.l/mol)		14219	
bFeΩ ₂	a(Å)	5 326 (3)	5 299434	-0.50
51 003	b(A)	5,602(3)	5 408981	-3 45
	c(A)	7 635(3)	7 738061	1 35
	$\alpha \beta \gamma$ (deraiat)	90	90	1,00
	Energi Kisi (k.l/mol)		13716	
			10110	
loFeO₃	a (Å)	5,278(3)	5,341825	1,21
	b (Å)	5,591(3)	5,450477	-2,51
	c (Å)	7,602(3)	7,693029	1,20
	α, β, γ (derajat)	90	90	
	Energi Kisi (kJ/mol)		13863	
rFeO ₃	a(Å)	5,263(3)	5,267707	0,09
-	b (Å)	5,582(3)	5,371539	-3,77
	c (Å)	7,591(3)	7,739768	1,96
	α, β, γ (deraiat)	90`	90	
	Energi Kisi (kJ/mol)		13751	
′bFeO ₃	a (Å)	5,233 (3)	5,165396	-1,29
-	b (Â)	5,557(3)	5,282002	-4,95
	c (Å)	7,570(3)	7,620930	0,67
	α, β, γ (deraiat)	90	90	- ,
	Energi Kisi (kJ/mol)		14134	

Tabel 3. Parameter struktur dari LnFeO₃ (Ln = Pr, Nd, Eu, Gd, Tb, Ho, Er, Yb, Lu) dan LnAlO₃ (Ln= La, Nd) hasil simulasi molekuler dan hasil percobaan difraksi sinar X

menunjukkan adanya kesesuaian antara parameter sel satuan hasil difraksi dan simulasi molekuler.

Energi kisi hasil simulasi molekuler memiliki kisaran nilai (13630 – 14274 kJ/mol) dan energi kisi dari persamaan yang dihasilkan (13505 – 13891 kJ/mol). Kedua hasil perhitungan energi kisi tersebut diatas apabila dibandingkan, maka diperoleh selisih yang sangat kecil, seperti terlihat dalam Tabel 4.

KESIMPULAN

Persamaan sederhana yang dapat digunakan untuk menentukan energi kisi perovskit dapat diturunkan dari persamaan U(YF), dimana kecocokkannya dengan U(BHC) sangat baik dibandingkan dengan persamaan U(G) dan U(GJ).

Tabel 3. Parameter struktur dari $LnFeO_3$ (Ln = Pr, Nd, Eu, Gd, Tb, Ho, Er, Yb, Lu) dan $LnAlO_3$ (Ln = La, Nd) hasil simulasi molekul<u>er dan hasil percobaan difraksi sinar X lanjutan</u>

Parameter	Percobaan	Perhitungan	% Selisih
LuFeO ₃			
a (Å)	5,213(3)	5,272044	1,13
b (Å)	5,547(3)	5,392262	-2,79
c (Å)	7,565(3)	7,674293	1,44
α, β, γ (derajat)	90	90	
Energi Kisi (kJ/mol)		13988	
LaAlÕ ₃			
a(Å)	5,365(1)	5,309460	-1,03
b (Å)	5,365(1)	5,309460	-1,03
c (Å)	13,111(3)	13,005470	-0,81
α, β, γ (derajat)	90, 90, 120	90, 90, 120	
Energi Kisi (kJ/mol)		14274	
NdAlO ₃			
a(Å)	5,322 (2)	5,300048	-0,42
b (Å)	5,322(2)	5,300048	-0,42
c (Å)	12,929(5)	12,938040	0,07
α, β, γ (derajat)	90, 90, 120	90, 90,120	
Energi Kisi (kJ/mol)		14140	

Tabel 4. Perbandingan energi kisi hasil perhitunganenergi kisi simulasi molekuler dan persamaansederhana

Senyawa	Energi Kisi (kJ/mol)			
Perovskit	Persamaan Sederhana	Simulasi Molekuler		
PrFeO ₃	13505	13816		
NdFeO ₃	13546	13845		
EuFeO ₃	13662	13630		
GdFeO₃	13685	14219		
TbFeO₃	13743	13716		
HoFeO₃	13798	13863		
ErFeO₃	13835	13751		
YbFeO ₃	13891	14134		
LuFeO₃	13891	13988		
LaAlO ₃	13603	14274		
NdAIO ₃	13755	14140		

Persamaan terbaik yang ditentukan dengan *least square* ($R^2 = 0.9982$) adalah :

 $UABO_3 = [1,0579(\Sigma U(BHC) \text{ Oksida A } + \Sigma U(BHC) \text{ Oksida B}) - 835,06] \text{ kJ/mol}$

Energi kisi hasil simulasi molekuler dan hasil persamaan yang dihasilkan mempunyai kecocokan yang sangat baik.

Selisih hasil studi difraksi dan perhitungan simulasi molekuler sangat kecil menunjukkan adanya kesesuaian antara parameter sel hasil studi difraksi dan simulasi molekuler.

DAFTAR PUSTAKA

- 1. Weller, M. T., 1994, *Inorganic Material Chemistry*, Oxford Science Publication, Oxford.
- 2. West, A. R., 1998, *Basic Solid State Chemistry*, 2nd ed, Plenum Press, New York.
- 3. Glasser, L., 1995, *Inorg. Chem.*, 34, 4953 4956
- 4. Glasser, L. and Jenkins, H. D. B., 2000, *J. Am. Chem. Soc.*, 122, 632 638.
- 5. Glasser, L. and Jenkins, H. D. B., 2002, *Inorg. Chem.*, 41, 4378 4388.
- Yoder, C. H. and Flora, N. J., 2005, *Am. Miner.*, 90, 488 – 496.
- Suhendar, D. dan Ismunandar., 2006, Penentuan Energi Kisi Oksida-oksida Piroklor, JMS FMIPA. ITB. Vol 11, No 1, hal 18 - 24.
- Gale, J. D., 1997, J. Chem. Soc., Faraday Trans., 93, 629.
- Navrotsky, A. and Kanke, Y., 1998, J. Solid State Chem., 141, 424 – 436.
- 10. Anonim, 2003, Standard Thermodynamic Properties of Chemical Substances, CRC Handbook of Chemistry and Physics, CRC Press, Boca Ratton, 5-5 - 5-60.
- 11. Emsley, J., 2000, *The Elements*, 3rd ed., Oxford University Press. Inc, New York.
- 12. Geller, S. and Balla, V. B., 1956, *Acta Cryst.*,9, 1019 1025
- 13. Marezio, M., Remeika, J. P., and Dernier, P. D., 1970, *Acta Cryst.*,B26, 2008 2022
- 14. Islam. M. S., 2002, Solid state ionic., 154, 75 85

Indo. J. Chem., 2008, 8 (3), 385 - 391