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ABSTRACT

The weighted holistic invariant molecular-three dimensional-quantitative structure property relationship (WHIM-
3D-QSPR) approach has been applied to the study of the aqueous solubility (– log Sw) of chlorinated hydrocarbon 
compounds (CHC’s). The obtained QSPR model is predictive and only requires four WHIM-3D descriptors in the 
calculation. The correlation equation of the model that is based on a training set of 50 CHC’s compound has 
statistical parameters: standard coefficient correlation (R2) = 0.948; cross-validated correlation coefficients (Q2) = 
0.935; Standard Error of Validation (SEV) = 0.35; and average absolute error (AAE) = 0.31. The application of the 
best model to a testing set of 50 CHC’s demonstrates a reliable result with good predictability. Besides, it was 
possible to construct new model by applying WHIM-3D-QSPR approach without require any experimental 
physicochemical properties in the calculation of aqueous solubility.

Keywords: WHIM-3D; QSPR; aqueous solubility; – Log Sw, chlorinated hydrocarbons, CHC’s.

INTRODUCTION

The aqueous solubility of organic compounds is 
an essential molecular property that plays a large role in 
the behaviour of compounds in many areas of concern. 
The aqueous solubility is also probably one of the most 
fundamental and deserves attention in the early phases 
of drug discovery and development. With regard to the 
importance of solubility, the prediction based solely on 
molecular structure should prove a useful tool, because 
the solubility of many existing compounds is not 
available. Additionally, the solubility of chemicals and 
drugs in the water phase has also an essential influence 
on the extent of their absorption and transport in a body. 
For that reason, the aqueous solubility is considered to 
be a very important parameter in current Absorption, 
Distribution, Metabolism, Excretion, and Toxicity 
(ADMET) research [1-9].  

The solubility data of compounds has widespread 
relevance to many branches and disciplines of science 
such as medicine, technology, and engineering. This fact 
has led to the development of several models to predict 
aqueous solubility of compound interest by using only 
theoretically derived descriptors without any 
experimental physicochemical properties. Therefore, 
reliable computational methods to predict aqueous 
solubility are more popular in today’s research in 
comparison with time-consuming experimental 
procedures to determine aqueous solubility [1,7-14]. 

Predictive models for aqueous solubility are 
generally based on a diverse set of descriptors such as 
experimentally based descriptors, molecular properties, 
and collection of relevant structural features, which are 
correlated to activity by means of various statistical 
techniques including multiple linear regression (MLR) 

and neural networks (NN) [1,7,15]. In a quantitative 
structure property relationship (QSPR) study is that 
there is some natures of relationship between the 
physical property of interest such as aqueous solubility 
and structural descriptors. These descriptors are 
numerical representations of structural features of 
molecules that attempt to encode important information 
that causes structurally different compounds to have 
different physical property values. Although the 
descriptors used to construct a QSPR model can be 
empirical, it is generally more useful to use descriptors 
derived mathematically from the three dimensional (3D) 
molecular structure, because of this allow any 
relationship so derived to be extended to the prediction 
of the property for unavailable compounds [9]. 

Not surprisingly, many of computational methods 
for the estimation of aqueous solubility has been 
extensively studied and reported [1-8,15,16]. However, 
to the best of our knowledge there is no published 
literature that reported the study on prediction of 
aqueous solubility of chlorinated hydrocarbon 
compounds (CHC’s) based on the weighted holistic 
invariant molecular-three dimensional (WHIM-3D) 
QSPR approach. The aim of this study, therefore, was 
to investigate the molecular descriptors important 
based on WHIM-3D-QSPR approach in determining 
aqueous solubility of a heterogeneous group of 50 
CHC’s (training set) as listed in Table 1. The stepwise 
MLR was used to select the most informative 
descriptors from the calculated descriptors. Leave-one-
out (LOO) cross validation method was used to assess 
the robustness of the model. The best QSPR model 
obtained was then used to predict the aqueous 
solubility for testing set of 50 CHC’s as also listed in 
Table 1. 



Indo. J. Chem., 2008, 8 (1), 65-71    

Oman Zuas

66

Table 1.  Experimental values of the molar aqueous solubility (-log Sw) of the 100 CHC’s

Cpd. No. CAS No. Name Experimental -log Sw 
Training set

1 75-09-2 Dichloromethane 0.74
2 67-66-3 Trichloromethane 1.19
3 56-23-5 Tetrachloromethane 2.26
4 79-34-5 1,1,2,2-Tetrachloroethane 1.76
5 540-59-0 1,2-Dichloroethene 1.07
6 79-01-6 Trichloroethene 2.04
7 127-18-4 Tetrachloroethene 2.57
8 108-90-7 Monochloro benzene 2.42
9 541-73-1 1,3-Dichloro benzene 3.04

10 95-50-1 1,2-Dichloro benzene 3.02
11 106-46-7 1,4-Dichloro benzene 3.31
12 120-82-1 1,2,4-Trichloro benzene 3.64
13 87-61-6 1,2,3-Trichloro benzene 4.08
14 108-70-3 1,3,5-Trichloro benzene 4.55
15 634-66-2 1,2,3,4-Tetrachloro benzene 4.38
16 95-94-3 1,2,4,5-Tetrachloro benzene 5.19
17 634-90-2 1,2,3,5-Tetrachloro benzene 4.73
18 608-93-5 Pentachloro benzene 5.37
19 39227-53-7 1-Chloro dibenzo-p-dioxin 5.72
20 39227-54-8 2-Chloro dibenzo-p-dioxin 5.86
21 29446-15-9 2,3-Dichloro dibenzo-p-dioxin 7.23
22 33857-26-0 2,7-Dichloro dibenzo-p-dioxin 7.83
23 39227-58-2 1,2,4-Trichloro dibenzo-p-dioxin 7.53
24 30746-58-8 1,2,3,4-Tetrachloro dibenzo-p-dioxin 8.77
25 2051-60-7 2-Chloro biphenyl 4.63
26 2051-61-8 3-Chloro biphenyl 4.88
27 2051-62-9 4-Chloro biphenyl 5.25
28 2050-68-2 4,4’-Dichloro biphenyl 6.63
29 34883-39-1 2,5-Dichloro biphenyl 5.27
30 33284-50-3 2,4-Dichloro biphenyl 5.29
31 33146-45-1 2,6-Dichloro biphenyl 5.07
32 2050-68-2 2,4’-Dichloro biphenyl 5.60
33 13029-08-8 2,2’-Dichloro biphenyl 5.36
34 37680-65-2 2,2’,5-Trichloro biphenyl 5.65
35 35693-92-6 2,4,6-Trichloro biphenyl 6.07
36 15862-07-4 2,4,5-Trichloro biphenyl 6.27
37 32598-13-3 3,3’,4,4’-Tetrachloro biphenyl 8.68
38 35693-99-3 2,2’,5,5’-Tetrachloro biphenyl 6.44
39 33284-53-6 2,3,4,5-Tetrachloro biphenyl 7.26
40 18259-05-7 2,3,4,5,6-Pentachloro biphenyl 7.78
41 37680-73-2 2,2’,4,5,5’-Pentachloro biphenyl 7.44
42 55312-69-1 2,2’,3,4,5-Pentachloro biphenyl 7.10
43 74472-44-9 2,3,3’,4’,5,6-Hexachloro biphenyl 7.83
44 55215-18-4 2,2’,3,3’,4,5-Hexachloro biphenyl 8.04
45 33979-03-2 2,2’,4,4’,6,6’-Hexachloro biphenyl 8.48
46 35065-27-1 2,2’,4,4’,5,5’-Hexachloro biphenyl 8.57
47 38411-22-2 2,2’,3,3’,6,6’-Hexachloro biphenyl 7.86
48 38380-07-3 2,2’,3,3’,4,4’-Hexachloro biphenyl 9.00
49 2136-99-4 2,2’,3,3’,5,5’,6,6’-Octachloro biphenyl 9.30
50 40186-72-9 2,2’,3,3’,4,4’,5,5’,6-Nonachloro biphenyl 9.93

Testing set
51 16606-02-3 2,4',5-trichlorobiphenyl 6.25
52 31508-00-6 2,3',4,4',5-Pentachlorobiphenyl 7.39
53 32598-11-1 2,3',4',5-Tetrachlorobiphenyl 7.25
54 35065-28-2 2,2',3,4,4',5'-Hexachlorobiphenyl 8.32
55 35694-08-7 2,2',3,3',4,4',5,5'-octachlorobiphenyl 9.16
56 38380-02-8 2,2',3,4,5'-Pentachlorodiphenyl 7.91
57 38380-08-4 2,3,3',4,4',5-Hexachlorobiphenyl 7.82
58 38444-85-8 2,3,4'-Trichlorobiphenyl 6.26
59 41464-39-5 2,2',3,5'-Tetrachlorobiphenyl 6.47
60 52663-63-5 2,2',3,5,5',6-Hexachlorobiphenyl 7.42
61 52663-69-1 2,2',3,4,4',5',6-Heptachlorobiphenyl 7.92
62 52712-04-6 2,2',3,4,5,5'-Hexachlorobiphenyl 7.68
63 52712-05-7 2,2',3,4,5,5',6-Heptachlorobiphenyl 8.94
64 55215-17-3 2,2',3,4,6-Pentachlorobiphenyl 7.43
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Table 1. (cont.)
Cpd. No. CAS No. Name Experimental -log Sw

65 55702-45-9 2,3,6-Trichlorobiphenyl 6.29
66 56558-16-8 2,2',4,6,6'-Petachlorobiphenyl 7.32
67 74472-42-7 2,3,3',4,4',6-Hexachlorobiphenyl 7.66
68 75-09-2 dichloromethane 0.63
69 67-66-3 trichloromethane 1.17
70 56-23-5 tetrachloromethane 2.31
71 75-34-3 1,1-dichloroethane 1.29
72 107-06-2 1,2-dichloroethane 1.06
73 109-69-3 1-chlorobutane 2.03
74 78-86-4 2-chlorobutane 1.96
75 513-36-0 1-chloro-2-methylpropane 2.00
76 541-33-3 1,1-dichlorobutane 2.40
77 7581-97-7 2,3-dichlombulane 2.70
78 543-59-9 1-chloropentane 2.73
79 625-29-6 2-chloropenlane 2.63
80 616-20-6 3-chloropentane 2.63
81 594-36-5 2-chloro-2-methylbutane 2.51
82 544-10-5 1-chlorohexane 3.12
83 319-86-8 α -hexachlorocyclohexane 4.51
84 75-35-4 1,1-dichlorcethylene 1.64
85 156-59-2 1,2-dichlorcethylene 1.30
86 107-05-1 3-chloropropylene 1.36
87 87-68-3 hexachloro-1,3-butadiene 4.92
88 77-47-4 hexachlorocyclo-pentadiene 5.18
89 95-49-8 2-chlorotoluene 3.52
90 100-44-7 α-chlorotoluene 2.39
91 106-43-4 p-chlorotoluene 3.08
92 38444-93-8 2,2',3,3'-tetrachlorobiphenyl 7.28
93 32598-10-0 2,3',4,4'-tetrachlorobiphenyl 7.80
94 41464-40-8 2,2',4,5'-tetrachlorobiphenyl 6.57
95 15968-05-5 2,2',6,6'-tetrachlorobiphenyl 8.03
96 52704-70-8 2,2',3,3',5,6-pentachlorobiphenyl 8.60
97 50-29-3 DDT 7.15
98 72-55-9 DDE 6.90
99 91-58-7 2-chloronaphthalene 4.14
100 90-13-1 1-chloronaphthalene 3.93

EXPERIMENTAL SECTION

Data set

In this work, a set of 100 CHC’s were studied. Their 
chemical names are listed in Table 1. All CHC’s together 
with their experimental – log Sw values were taken from 
the work of Wang et al. [5]. The CHC’s were divided into 
training set (50 compounds) and a testing set (50 
compounds).  Both the training and the testing set 
contain saturated, unsaturated, aliphatic and aromatic 
compounds, dioxins and polychlorinated biphenyls.

Descriptors calculations

Firstly, the chemical structures of all molecules 
were built using HyperChem Release 7.0 for Windows 
[17] and were implemented in the DRAGON version 5.4 
software [18], for the WHIM-3D descriptors calculation. 
The WHIM-3D descriptors used in this work are listed in 
Table 2. 

Modeling and prediction

Milano Chemometric and QSAR Research Group 
of Professor Roberto Todeschini firstly developed the 

WHIM descriptor [19]. The WHIM descriptors are three-
dimensional descriptor based on the calculation of 
principal component axes calculated from a weighted 
covariance matrix obtained by the molecule geometric 
coordinated. Six different weighting schemes are used 
for weighted covariance matrix i.e., u (unweighted); m
(atomic mass), p (atomic polarizability), v (van der 
Waals volume), e (atomic electronegativity), and s
(atomic electronegativity state). The WHIM descriptors 
are consisted of 99 descriptors and contain chemical 
information concerning size, symmetry, shape and 
distribution of the molecule atoms, more complete 
definition of the WHIM-3D descriptors can be found in 
the literatures [20-24]. After the calculation of eight 
WHIM-3D descriptors (Table 2), the stepwise MLR was 
used build the QSPR model by means of the SPSS 
Release 12.0 for Windows [25]. The classical QSPR 
regression equation can be obtained by the use of the 
scaled regression coefficients, mean and standard 
deviation of each original descriptor. The statistical 
parameters used to assess the quality of the models 
are the Standard Error of Validation (SEV)  and the 
standard correlation coefficients (R2),  and cross-
validated correlation coefficients (Q2) are given by Eq. 
1,  2 and  3, respectively [5,  26-29].   The best model
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Table 2. The notation of the WHIM-3D descriptors 
involved in the QSPR model.

Notation Descriptors

L1m 1st component size directional WHIM index / 
weighted by atomic masses

L2m 2nd component size directional WHIM index / 
weighted by atomic masses

L3m 3rd component size directional WHIM index / 
weighted by atomic masses

P1m 1st component shape directional WHIM index 
/ weighted by atomic masses

P2m 2nd component shape directional WHIM index 
/ weighted by atomic masses

G1m 1st component symmetry directional WHIM 
index / weighted by atomic masses

G2m 2st component symmetry directional WHIM 
index / weighted by atomic masses

G3m 3st component symmetry directional WHIM 
index / weighted by atomic masses

E1m 1st component accessibility directional WHIM 
index / weighted by atomic masses

E2m 2nd component accessibility directional WHIM 
index / weighted by atomic masses

 E3m 3rd component accessibility directional WHIM 
index / weighted by atomic masses

derived from the MLR analysis was used to predict the –
log Sw of the testing set compounds (Table 1) which 
were not included in the training set.
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In these equations, n is the number of 
compounds used for cross-validation, yi  is the 
experimental value of the physicochemical property for 
the ith sample. iŷ is the value predicted by the model built 
without sample i. yi is the mean value of experimental 
physicochemical property. The average absolute error 
( AAE ) (Eq. 4) was calculated as the following equation. 

   predicted exp erimentallogSw logSw
AAE

n

  

 (4)

Where –log Swpredicted are predicted values of the 
aqueous solubility, –log Swexperimental are the experimental 
values of the aqueous solubility, and n is number of 
compounds 

RESULT AND DISCUSSION

The experimental data of 50 CHC’s listed as 
training set in Table 1 were used to construct the 
regression models and set as dependent variable. 
Eleven WHIM-3D descriptors (Table 2) are set as 
independent variables. The values of all descriptors are 
listed in Table 3 except for L3m, G3m and E3m since 
these three descriptors have constant values and will 
have no effect on the statistical calculation. That why 
these three descriptors were removed from the table. 
To obtain the best QSPR model all possible
combinations of the WHIM-3D descriptors were 
investigated. The stepwise MLR was used to select 
each independent variable for deriving a QSPR model 
by considering the correlation between each variable 
with the dependent variable. Of eight descriptors (Table 
3), four descriptors have been automatically selected to 
model – log Sw i.e. L1m, L2m, G1m, and G2m. It 
should be mentioned that more models were obtained 
from the MLR analysis, but they were ruled out by the 
stepwise MLR procedure. The general purpose of MLR 
is to quantify the relationship between several 
independent variables (WHIM-3D descriptors) and a 
dependent variable (-log Sw) of CHC’s. A set of 
coefficients defines the single linear combination of 
independent variables that best describes aqueous 
solubility of CHC’s. The MLR equation used for the 
QSPR model developed is as follows:

cb.......abababaY nn332211  (5)

Where Y is dependent variable. n321 ........aa,a,a  is the 

regression coefficients of independent variables. 

n21 ........bb,b,b
3

 are independent variables. c  is the 

regression constant obtained from the model fit. To 
avoid self correlation between the variables used for 
the derivation of the QSPR model, the correlation 
matrix of eight selected descriptor was calculated and 
the result shown in Table 4. The best QSPR model 
obtained from the MLR analysis is shown in Equation 
6. While the statistical parameters values of SEV and 
AAE of prediction set for the MLR model were 0.35 and 
zero, respectively.

 
   
   

-log Sw   1.581 0.0831  L1m

             4.374 0.294  L2m  0.911 0.225 G1m

             0.664 0.227  G2m  1.952 0.337

  

   

  

      (6)

(n=50, R2=0.948, Q2 = 0.935, F = 204.968, s= 0.564  )
Based on this relationship the –log Sw of 50 

CHC’s were predicted and the accuracy of the 
predictions was then assessed by the residuals 
between the experimental and predicted values. The 
plot of experimental and predicted –log Sw of 
compounds in the training set based on the QSAR 
equation above is given in Fig 1. The results indicate a 
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Table 3. The calculated WHIM-3D descriptors values of CHC’s as training compounds used in QSPR models.
Cpd. No -log Sw L1m L2m P1m P2m G1m G2m E1m E2m

1 0.74 0.426 0.202 0.657 0.312 1.000 0.301 1.742 0.747
2 1.19 0.357 0.303 0.541 0.459 0.301 1.000 0.617 0.882
3 2.26 0.314 0.314 0.500 0.500 1.000 1.000 0.531 0.531
4 1.76 0.599 0.443 0.575 0.425 1.000 1.000 1.504 0.522
5 1.07 0.559 0.471 0.543 0.457 1.000 0.279 0.712 0.710
6 2.04 0.679 0.355 0.656 0.344 0.679 0.279 1.024 0.204
7 2.57 0.607 0.437 0.582 0.418 1.000 1.000 0.116 1.097
8 2.42 1.162 0.316 0.786 0.214 0.218 1.000 0.655 0.039
9 3.04 1.189 0.574 0.674 0.326 1.000 0.218 0.701 0.132

10 3.02 1.239 0.557 0.690 0.310 0.218 1.000 0.774 0.124
11 3.31 1.505 0.242 0.862 0.138 1.000 1.000 1.418 0.023
12 3.64 1.413 0.527 0.728 0.272 0.218 0.218 1.248 0.114
13 4.08 1.018 0.963 0.514 0.486 0.218 1.000 0.523 0.460
14 4.55 0.963 0.963 0.500 0.500 0.436 1.000 0.460 0.460
15 4.38 1.240 0.844 0.595 0.405 1.000 0.218 1.000 0.359
16 5.19 1.455 0.595 0.710 0.290 1.000 1.000 1.433 0.145
17 4.73 1.251 0.810 0.607 0.393 0.218 1.000 1.020 0.325
18 5.37 1.255 0.894 0.584 0.416 1.000 0.218 1.066 0.411
19 5.72 2.206 0.737 0.750 0.250 0.781 0.183 0.243 0.151
20 5.86 3.126 0.462 0.871 0.129 0.183 0.781 0.488 0.072
21 7.23 3.784 0.536 0.876 0.124 0.183 1.000 0.731 0.108
22 7.83 3.875 0.414 0.903 0.097 1.000 1.000 0.818 0.054
23 7.53 2.877 0.994 0.743 0.257 0.183 0.531 0.416 0.394
24 8.77 3.424 0.998 0.774 0.226 0.183 1.000 0.598 0.469
25 4.63 1.683 0.739 0.695 0.305 0.781 0.183 0.178 0.196
26 4.88 2.578 0.591 0.813 0.187 0.183 0.183 0.463 0.096
27 5.25 3.166 0.377 0.894 0.106 0.183 1.000 0.675 0.051
28 6.63 3.947 0.318 0.925 0.075 1.000 1.000 1.147 0.036
29 5.27 2.173 0.837 0.722 0.278 0.702 0.635 0.328 0.200
30 5.29 2.704 0.630 0.811 0.189 0.183 0.198 0.493 0.149
31 5.07 1.437 0.943 0.604 0.396 0.183 1.000 0.128 0.356
32 5.60 2.711 0.632 0.811 0.189 0.183 0.198 0.496 0.150
33 5.36 1.500 0.883 0.630 0.370 1.000 1.000 0.154 0.214
34 5.65 1.888 1.021 0.649 0.351 0.198 0.183 0.249 0.305
35 6.07 2.357 0.817 0.743 0.257 0.531 1.000 0.374 0.267
36 6.27 2.962 0.771 0.793 0.207 0.183 0.531 0.618 0.212
37 8.68 4.155 0.581 0.877 0.123 1.000 1.000 1.400 0.108
38 6.44 2.361 0.937 0.716 0.284 1.000 1.000 0.465 0.189
39 7.26 3.092 0.959 0.763 0.237 0.183 0.198 0.666 0.390
40 7.78 2.773 1.071 0.721 0.279 0.183 1.000 0.534 0.521
41 7.44 2.894 0.938 0.755 0.245 0.183 0.781 0.646 0.273
42 7.10 2.797 1.062 0.725 0.275 0.183 0.531 0.547 0.501
43 7.83 2.940 1.120 0.724 0.276 0.183 0.183 0.633 0.528
44 8.04 2.993 1.083 0.734 0.660 0.183 0.183 0.671 0.456
45 8.48 2.506 0.969 0.721 0.279 1.000 1.000 0.462 0.427
46 8.57 3.365 0.886 0.792 0.208 1.000 1.000 0.912 0.283
47 7.86 2.133 0.954 0.691 0.309 1.000 1.000 0.481 0.139
48 9.00 2.133 0.954 0.691 0.309 1.000 1.000 0.481 0.139
49 9.30 2.134 1.462 0.593 0.407 1.000 1.000 0.299 1.326
50 9.93 3.194 1.204 0.726 0.274 0.183 0.253 0.804 0.824

good linear regression of correlation between 
experimental and predicted –log Sw. 

In previous study, Wang et al. [5] used molecular 
connectivity indices to develop a QSPR model for 
CHC’s. They achieved in correlating the three 
connectivity indices descriptors that reflect the 
contribution of clusters in a molecule to aqueous 
solubility that are important in describing the aqueous 

solubility of CHC’s. Another study reported by Delgado 
[16] demonstrated that CODESSA has been 
successfully in applying to develop QSPR model and 
carried out a correlation analysis to find the best QSPR 
model using a heuristic method. Delgado attained in 
obtaining the two descriptors that have definite physical 
meaning corresponding to different intermolecular 
interactions.
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Table 4. The correlation matrix of all WHIM-3D descriptors used in QSPR studies
-log Sw L1m L2m P1m P2m G1m G2m E1m E2m

-log Sw 1 0.825 0.705 0.449 -0.325 -0.135 0.097 -0.238 -0.049
L1m 1 0.299 0.814 -0.671 -0.269 0.023 -0.083 -0.325
L2m 1 -0.194 0.265 -0.214 -0.096 -0.454 0.314
P1m 1 -0.887 -0.195 -0.001 0.151 -0.604
P2m 1 0.103 -0.086 -0.154 0.567
G1m 1 0.205 0.263 0.077
G2m 1 -0.004 0.003
E1m 1 -0.131
E2m 1

Fig 1.  Plot of predicted –log Sw values versus the 
experimental –log Sw values of CHC’s in the training set.

In this study, the WHIM-3D descriptors were used 
to predict the aqueous solubility of CHC’s. WHIM 
descriptors are the molecular descriptors based on 
statistical indices calculated on the projections of the 
atoms along principal axes. They are built in such a way 
as to capture relevant molecular 3-dimensional 
information regarding molecular size, shape, symmetry, 
and atom distribution with respect to invariant reference 
frames [21, 22, 24]. The fact that the WHIM descriptor is 
derived from three-dimensional representing of a 
molecule, seems to indicate a connection between the 
molecular structures of the physicochemical properties
of compounds. The result of this study demonstrated 
that the L1m and L2m that reflect the size of molecule is 
the most significant descriptor, as can be seen by its 
highest correlation values with –log Sw of CHC’s (Table 
4). The other descriptors G1m and G2m that reflect the 
contribution of symmetry of the molecule are also 
important in describing the aqueous solubility of CHC’s 
compound. The positive value of the coefficient for all 
descriptors implies that a high size and symmetry of the 
CHC’s molecule correlates with decreased the solubility 
of the CHC’s. To test the predictive ability of the model 
obtained in this study (Eq. 6), the aqueous solubility data 
for 50 CHC’s taken from the Wang et al. [5] were 
predicted. The scatter plot of obtained predictive results 
together with their experimental values is given in Fig 2.  

Fig 2. Plot of predicted –log Sw values versus the 
experimental –log Sw values of CHC’s in the testing 
set.

The prediction results are in good agreement with the 
experimental values. The high cross-validated 
coefficient correlation (Q2= 0,935) and low average 
absolute error (AAE = 0.31) observed indicated that the 
developed QSPR model is reliable and has good 
predictability.

CONCLUSION

QSPR studies are an important tool for research 
and knowledge of chemical compounds and it has 
been frequently used in medicinal chemistry and 
molecular design to investigate new drugs. Predictive 
QSPR model that is based on WHIM-3D is suggested 
in this study to correlate the aqueous solubility of 50 
CHC’s. The application of the best model obtained to a 
testing set of 50 CHC’s demonstrates that the new 
model is reliable with good predictability. Besides, it 
was possible to construct new model by applying 
WHIM-3D approach without require any experimental 
physicochemical properties in the calculation of 
aqueous solubility.
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ABSTRACT

The weighted holistic invariant molecular-three dimensional-quantitative structure property relationship (WHIM-3D-QSPR) approach has been applied to the study of the aqueous solubility (– log Sw) of chlorinated hydrocarbon compounds (CHC’s). The obtained QSPR model is predictive and only requires four WHIM-3D descriptors in the calculation. The correlation equation of the model that is based on a training set of 50 CHC’s compound has statistical parameters: standard coefficient correlation (R2) = 0.948; cross-validated correlation coefficients (Q2) = 0.935; Standard Error of Validation (SEV) = 0.35; and average absolute error (AAE) = 0.31. The application of the best model to a testing set of 50 CHC’s demonstrates a reliable result with good predictability. Besides, it was possible to construct new model by applying WHIM-3D-QSPR approach without require any experimental physicochemical properties in the calculation of aqueous solubility.


Keywords: WHIM-3D; QSPR; aqueous solubility; – Log Sw, chlorinated hydrocarbons, CHC’s.


INTRODUCTION



The aqueous solubility of organic compounds is an essential molecular property that plays a large role in the behaviour of compounds in many areas of concern. The aqueous solubility is also probably one of the most fundamental and deserves attention in the early phases of drug discovery and development. With regard to the importance of solubility, the prediction based solely on molecular structure should prove a useful tool, because the solubility of many existing compounds is not available. Additionally, the solubility of chemicals and drugs in the water phase has also an essential influence on the extent of their absorption and transport in a body. For that reason, the aqueous solubility is considered to be a very important parameter in current Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) research [1-9].  


The solubility data of compounds has widespread relevance to many branches and disciplines of science such as medicine, technology, and engineering. This fact has led to the development of several models to predict aqueous solubility of compound interest by using only theoretically derived descriptors without any experimental physicochemical properties. Therefore, reliable computational methods to predict aqueous solubility are more popular in today’s research in comparison with time-consuming experimental procedures to determine aqueous solubility [1,7-14]. 
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Predictive models for aqueous solubility are generally based on a diverse set of descriptors such as experimentally based descriptors, molecular properties, and collection of relevant structural features, which are correlated to activity by means of various statistical techniques including multiple linear regression (MLR) and neural networks (NN) [1,7,15]. In a quantitative structure property relationship (QSPR) study is that there is some natures of relationship between the physical property of interest such as aqueous solubility and structural descriptors. These descriptors are numerical representations of structural features of molecules that attempt to encode important information that causes structurally different compounds to have different physical property values. Although the descriptors used to construct a QSPR model can be empirical, it is generally more useful to use descriptors derived mathematically from the three dimensional (3D) molecular structure, because of this allow any relationship so derived to be extended to the prediction of the property for unavailable compounds [9]. 


Not surprisingly, many of computational methods for the estimation of aqueous solubility has been extensively studied and reported [1-8,15,16]. However, to the best of our knowledge there is no published literature that reported the study on prediction of aqueous solubility of chlorinated hydrocarbon compounds (CHC’s) based on the weighted holistic invariant molecular-three dimensional (WHIM-3D) QSPR approach. The aim of this study, therefore, was to investigate the molecular descriptors important based on WHIM-3D-QSPR approach in determining aqueous solubility of a heterogeneous group of 50 CHC’s (training set) as listed in Table 1. The stepwise MLR was used to select the most informative descriptors from the calculated descriptors. Leave-one-out (LOO) cross validation method was used to assess the robustness of the model. The best QSPR model obtained was then used to predict the aqueous solubility for testing set of 50 CHC’s as also listed in Table 1. 


Table 1.  Experimental values of the molar aqueous solubility (-log Sw) of the 100 CHC’s


		Cpd. No.

		CAS No.

		Name

		Experimental -log Sw 



		Training set



		1

		75-09-2

		Dichloromethane

		0.74



		2

		67-66-3

		Trichloromethane

		1.19



		3

		56-23-5

		Tetrachloromethane

		2.26



		4

		79-34-5

		1,1,2,2-Tetrachloroethane

		1.76



		5

		540-59-0

		1,2-Dichloroethene

		1.07



		6

		79-01-6

		Trichloroethene

		2.04



		7

		127-18-4

		Tetrachloroethene

		2.57



		8

		108-90-7

		Monochloro benzene

		2.42



		9

		541-73-1

		1,3-Dichloro benzene

		3.04



		10

		95-50-1

		1,2-Dichloro benzene

		3.02



		11

		106-46-7

		1,4-Dichloro benzene

		3.31



		12

		120-82-1

		1,2,4-Trichloro benzene

		3.64



		13

		87-61-6

		1,2,3-Trichloro benzene

		4.08



		14

		108-70-3

		1,3,5-Trichloro benzene

		4.55



		15

		634-66-2

		1,2,3,4-Tetrachloro benzene

		4.38



		16

		95-94-3

		1,2,4,5-Tetrachloro benzene

		5.19



		17

		634-90-2

		1,2,3,5-Tetrachloro benzene

		4.73



		18

		608-93-5

		Pentachloro benzene

		5.37



		19

		39227-53-7

		1-Chloro dibenzo-p-dioxin

		5.72



		20

		39227-54-8

		2-Chloro dibenzo-p-dioxin

		5.86



		21

		29446-15-9

		2,3-Dichloro dibenzo-p-dioxin

		7.23



		22

		33857-26-0

		2,7-Dichloro dibenzo-p-dioxin

		7.83



		23

		39227-58-2

		1,2,4-Trichloro dibenzo-p-dioxin

		7.53



		24

		30746-58-8

		1,2,3,4-Tetrachloro dibenzo-p-dioxin

		8.77



		25

		2051-60-7

		2-Chloro biphenyl

		4.63



		26

		2051-61-8

		3-Chloro biphenyl

		4.88



		27

		2051-62-9

		4-Chloro biphenyl

		5.25



		28

		2050-68-2

		4,4’-Dichloro biphenyl

		6.63



		29

		34883-39-1

		2,5-Dichloro biphenyl

		5.27



		30

		33284-50-3

		2,4-Dichloro biphenyl

		5.29



		31

		33146-45-1

		2,6-Dichloro biphenyl

		5.07



		32

		2050-68-2

		2,4’-Dichloro biphenyl

		5.60



		33

		13029-08-8

		2,2’-Dichloro biphenyl

		5.36



		34

		37680-65-2

		2,2’,5-Trichloro biphenyl

		5.65



		35

		35693-92-6

		2,4,6-Trichloro biphenyl

		6.07



		36

		15862-07-4

		2,4,5-Trichloro biphenyl

		6.27



		37

		32598-13-3

		3,3’,4,4’-Tetrachloro biphenyl

		8.68



		38

		35693-99-3

		2,2’,5,5’-Tetrachloro biphenyl

		6.44



		39

		33284-53-6

		2,3,4,5-Tetrachloro biphenyl

		7.26



		40

		18259-05-7

		2,3,4,5,6-Pentachloro biphenyl

		7.78



		41

		37680-73-2

		2,2’,4,5,5’-Pentachloro biphenyl

		7.44



		42

		55312-69-1

		2,2’,3,4,5-Pentachloro biphenyl

		7.10



		43

		74472-44-9

		2,3,3’,4’,5,6-Hexachloro biphenyl

		7.83



		44

		55215-18-4

		2,2’,3,3’,4,5-Hexachloro biphenyl

		8.04



		45

		33979-03-2

		2,2’,4,4’,6,6’-Hexachloro biphenyl

		8.48



		46

		35065-27-1

		2,2’,4,4’,5,5’-Hexachloro biphenyl

		8.57



		47

		38411-22-2

		2,2’,3,3’,6,6’-Hexachloro biphenyl

		7.86



		48

		38380-07-3

		2,2’,3,3’,4,4’-Hexachloro biphenyl

		9.00



		49

		2136-99-4

		2,2’,3,3’,5,5’,6,6’-Octachloro biphenyl

		9.30



		50

		40186-72-9

		2,2’,3,3’,4,4’,5,5’,6-Nonachloro biphenyl

		9.93



		Testing set



		51

		16606-02-3

		2,4',5-trichlorobiphenyl

		6.25



		52

		31508-00-6

		2,3',4,4',5-Pentachlorobiphenyl

		7.39



		53

		32598-11-1

		2,3',4',5-Tetrachlorobiphenyl

		7.25



		54

		35065-28-2

		2,2',3,4,4',5'-Hexachlorobiphenyl

		8.32



		55

		35694-08-7

		2,2',3,3',4,4',5,5'-octachlorobiphenyl

		9.16



		56

		38380-02-8

		2,2',3,4,5'-Pentachlorodiphenyl

		7.91



		57

		38380-08-4

		2,3,3',4,4',5-Hexachlorobiphenyl

		7.82



		58

		38444-85-8

		2,3,4'-Trichlorobiphenyl

		6.26



		59

		41464-39-5

		2,2',3,5'-Tetrachlorobiphenyl

		6.47



		60

		52663-63-5

		2,2',3,5,5',6-Hexachlorobiphenyl

		7.42



		61

		52663-69-1

		2,2',3,4,4',5',6-Heptachlorobiphenyl

		7.92



		62

		52712-04-6

		2,2',3,4,5,5'-Hexachlorobiphenyl

		7.68



		63

		52712-05-7

		2,2',3,4,5,5',6-Heptachlorobiphenyl

		8.94



		64

		55215-17-3

		2,2',3,4,6-Pentachlorobiphenyl

		7.43





Table 1. (cont.)

		Cpd. No.

		CAS No.

		Name

		Experimental -log Sw



		65

		55702-45-9

		2,3,6-Trichlorobiphenyl

		6.29



		66

		56558-16-8

		2,2',4,6,6'-Petachlorobiphenyl

		7.32



		67

		74472-42-7

		2,3,3',4,4',6-Hexachlorobiphenyl

		7.66



		68

		75-09-2

		dichloromethane

		0.63



		69

		67-66-3

		trichloromethane

		1.17



		70

		56-23-5

		tetrachloromethane

		2.31



		71

		75-34-3

		1,1-dichloroethane

		1.29



		72

		107-06-2

		1,2-dichloroethane

		1.06



		73

		109-69-3

		1-chlorobutane

		2.03



		74

		78-86-4

		2-chlorobutane

		1.96



		75

		513-36-0

		1-chloro-2-methylpropane

		2.00



		76

		541-33-3

		1,1-dichlorobutane

		2.40



		77

		7581-97-7

		2,3-dichlombulane

		2.70



		78

		543-59-9

		1-chloropentane

		2.73



		79

		625-29-6

		2-chloropenlane

		2.63



		80

		616-20-6

		3-chloropentane

		2.63



		81

		594-36-5

		2-chloro-2-methylbutane

		2.51



		82

		544-10-5

		1-chlorohexane

		3.12



		83

		319-86-8

		α -hexachlorocyclohexane

		4.51



		84

		75-35-4

		1,1-dichlorcethylene

		1.64



		85

		156-59-2

		1,2-dichlorcethylene

		1.30



		86

		107-05-1

		3-chloropropylene

		1.36



		87

		87-68-3

		hexachloro-1,3-butadiene

		4.92



		88

		77-47-4

		hexachlorocyclo-pentadiene

		5.18



		89

		95-49-8

		2-chlorotoluene

		3.52



		90

		100-44-7

		α-chlorotoluene

		2.39



		91

		106-43-4

		p-chlorotoluene

		3.08



		92

		38444-93-8

		2,2',3,3'-tetrachlorobiphenyl

		7.28



		93

		32598-10-0

		2,3',4,4'-tetrachlorobiphenyl

		7.80



		94

		41464-40-8

		2,2',4,5'-tetrachlorobiphenyl

		6.57



		95

		15968-05-5

		2,2',6,6'-tetrachlorobiphenyl

		8.03



		96

		52704-70-8

		2,2',3,3',5,6-pentachlorobiphenyl

		8.60



		97

		50-29-3

		DDT

		7.15



		98

		72-55-9

		DDE

		6.90



		99

		91-58-7

		2-chloronaphthalene

		4.14



		100

		90-13-1

		1-chloronaphthalene

		3.93





EXPERIMENTAL SECTION


Data set 

In this work, a set of 100 CHC’s were studied. Their chemical names are listed in Table 1. All CHC’s together with their experimental – log Sw values were taken from the work of Wang et al. [5]. The CHC’s were divided into training set (50 compounds) and a testing set (50 compounds).  Both the training and the testing set contain saturated, unsaturated, aliphatic and aromatic compounds, dioxins and polychlorinated biphenyls.


Descriptors calculations

Firstly, the chemical structures of all molecules were built using HyperChem Release 7.0 for Windows [17] and were implemented in the DRAGON version 5.4 software [18], for the WHIM-3D descriptors calculation. The WHIM-3D descriptors used in this work are listed in Table 2. 


Modeling and prediction


Milano Chemometric and QSAR Research Group of Professor Roberto Todeschini firstly developed the WHIM descriptor [19]. The WHIM descriptors are three-dimensional descriptor based on the calculation of principal component axes calculated from a weighted covariance matrix obtained by the molecule geometric coordinated. Six different weighting schemes are used for weighted covariance matrix i.e., u (unweighted); m (atomic mass), p (atomic polarizability), v (van der Waals volume), e (atomic electronegativity), and s (atomic electronegativity state). The WHIM descriptors are consisted of 99 descriptors and contain chemical information concerning size, symmetry, shape and distribution of the molecule atoms, more complete definition of the WHIM-3D descriptors can be found in the literatures [20-24]. After the calculation of eight WHIM-3D descriptors (Table 2), the stepwise MLR was used build the QSPR model by means of the SPSS Release 12.0 for Windows [25]. The classical QSPR regression equation can be obtained by the use of the scaled regression coefficients, mean and standard deviation of each original descriptor. The statistical parameters used to assess the quality of the models are the Standard Error of Validation (SEV)  and the standard correlation coefficients (R2),  and cross-validated correlation coefficients (Q2) are given by Eq. 1,  2 and  3, respectively [5,  26-29].   The best model

Table 2. The notation of the WHIM-3D descriptors involved in the QSPR model.


		Notation

		Descriptors



		L1m

		1st component size directional WHIM index / weighted by atomic masses



		L2m

		2nd component size directional WHIM index / weighted by atomic masses



		L3m

		3rd component size directional WHIM index / weighted by atomic masses



		P1m

		1st component shape directional WHIM index / weighted by atomic masses



		P2m

		2nd component shape directional WHIM index / weighted by atomic masses



		G1m

		1st component symmetry directional WHIM index / weighted by atomic masses



		G2m

		2st component symmetry directional WHIM index / weighted by atomic masses



		G3m

		3st component symmetry directional WHIM index / weighted by atomic masses



		E1m

		1st component accessibility directional WHIM index / weighted by atomic masses



		E2m

		2nd component accessibility directional WHIM index / weighted by atomic masses



		 E3m

		3rd component accessibility directional WHIM index / weighted by atomic masses





derived from the MLR analysis was used to predict the – log Sw of the testing set compounds (Table 1) which were not included in the training set.
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In these equations, n is the number of compounds used for cross-validation, yi  is the experimental value of the physicochemical property for the ith sample. 
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is the value predicted by the model built without sample i. yi is the mean value of experimental physicochemical property. The average absolute error (
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) (Eq. 4) was calculated as the following equation. 
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(4) Where –log Swpredicted are predicted values of the aqueous solubility, –log Swexperimental are the experimental values of the aqueous solubility, and n is number of compounds 

RESULT AND DISCUSSION


The experimental data of 50 CHC’s listed as training set in Table 1 were used to construct the regression models and set as dependent variable. Eleven WHIM-3D descriptors (Table 2) are set as independent variables. The values of all descriptors are listed in Table 3 except for L3m, G3m and E3m since these three descriptors have constant values and will have no effect on the statistical calculation. That why these three descriptors were removed from the table. To obtain the best QSPR model all possible combinations of the WHIM-3D descriptors were investigated. The stepwise MLR was used to select each independent variable for deriving a QSPR model by considering the correlation between each variable with the dependent variable. Of eight descriptors (Table 3), four descriptors have been automatically selected to model – log Sw i.e. L1m, L2m, G1m, and G2m. It should be mentioned that more models were obtained from the MLR analysis, but they were ruled out by the stepwise MLR procedure. The general purpose of MLR is to quantify the relationship between several independent variables (WHIM-3D descriptors) and a dependent variable (-log Sw) of CHC’s. A set of coefficients defines the single linear combination of independent variables that best describes aqueous solubility of CHC’s. The MLR equation used for the QSPR model developed is as follows:
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Where Y is dependent variable. 
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 is the regression constant obtained from the model fit. To avoid self correlation between the variables used for the derivation of the QSPR model, the correlation matrix of eight selected descriptor was calculated and the result shown in Table 4. The best QSPR model obtained from the MLR analysis is shown in Equation 6. While the statistical parameters values of SEV and AAE of prediction set for the MLR model were 0.35 and zero, respectively.
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(n=50, R2=0.948, Q2 = 0.935, F = 204.968, s= 0.564  )

Based on this relationship the –log Sw of 50 CHC’s were predicted and the accuracy of the predictions was then assessed by the residuals between the experimental and predicted values. The plot of experimental and predicted –log Sw of compounds in the training set based on the QSAR equation above is given in Fig 1. The results indicate a 


Table 3. The calculated WHIM-3D descriptors values of CHC’s as training compounds used in QSPR models.


		Cpd. No

		-log Sw

		L1m

		L2m

		P1m

		P2m

		G1m

		G2m

		E1m

		E2m



		1

		0.74

		0.426

		0.202

		0.657

		0.312

		1.000

		0.301

		1.742

		0.747



		2

		1.19

		0.357

		0.303

		0.541

		0.459

		0.301

		1.000

		0.617

		0.882



		3

		2.26

		0.314

		0.314

		0.500

		0.500

		1.000

		1.000

		0.531

		0.531



		4

		1.76

		0.599

		0.443

		0.575

		0.425

		1.000

		1.000

		1.504

		0.522



		5

		1.07

		0.559

		0.471

		0.543

		0.457

		1.000

		0.279

		0.712

		0.710



		6

		2.04

		0.679

		0.355

		0.656

		0.344

		0.679

		0.279

		1.024

		0.204



		7

		2.57

		0.607

		0.437

		0.582

		0.418

		1.000

		1.000

		0.116

		1.097



		8

		2.42

		1.162

		0.316

		0.786

		0.214

		0.218

		1.000

		0.655

		0.039



		9

		3.04

		1.189

		0.574

		0.674

		0.326

		1.000

		0.218

		0.701

		0.132



		10

		3.02

		1.239

		0.557

		0.690

		0.310

		0.218

		1.000

		0.774

		0.124



		11

		3.31

		1.505

		0.242

		0.862

		0.138

		1.000

		1.000

		1.418

		0.023



		12

		3.64

		1.413

		0.527

		0.728

		0.272

		0.218

		0.218

		1.248

		0.114



		13

		4.08

		1.018

		0.963

		0.514

		0.486

		0.218

		1.000

		0.523

		0.460



		14

		4.55

		0.963

		0.963

		0.500

		0.500

		0.436

		1.000

		0.460

		0.460



		15

		4.38

		1.240

		0.844

		0.595

		0.405

		1.000

		0.218

		1.000

		0.359



		16

		5.19

		1.455

		0.595

		0.710

		0.290

		1.000

		1.000

		1.433

		0.145



		17

		4.73

		1.251

		0.810

		0.607

		0.393

		0.218

		1.000

		1.020

		0.325



		18

		5.37

		1.255

		0.894

		0.584

		0.416

		1.000

		0.218

		1.066

		0.411



		19

		5.72

		2.206

		0.737

		0.750

		0.250

		0.781

		0.183

		0.243

		0.151



		20

		5.86

		3.126

		0.462

		0.871

		0.129

		0.183

		0.781

		0.488

		0.072



		21

		7.23

		3.784

		0.536

		0.876

		0.124

		0.183

		1.000

		0.731

		0.108



		22

		7.83

		3.875

		0.414

		0.903

		0.097

		1.000

		1.000

		0.818

		0.054



		23

		7.53

		2.877

		0.994

		0.743

		0.257

		0.183

		0.531

		0.416

		0.394



		24

		8.77

		3.424

		0.998

		0.774

		0.226

		0.183

		1.000

		0.598

		0.469



		25

		4.63

		1.683

		0.739

		0.695

		0.305

		0.781

		0.183

		0.178

		0.196



		26

		4.88

		2.578

		0.591

		0.813

		0.187

		0.183

		0.183

		0.463

		0.096



		27

		5.25

		3.166

		0.377

		0.894

		0.106

		0.183

		1.000

		0.675

		0.051



		28

		6.63

		3.947

		0.318

		0.925

		0.075

		1.000

		1.000

		1.147

		0.036



		29

		5.27

		2.173

		0.837

		0.722

		0.278

		0.702

		0.635

		0.328

		0.200



		30

		5.29

		2.704

		0.630

		0.811

		0.189

		0.183

		0.198

		0.493

		0.149



		31

		5.07

		1.437

		0.943

		0.604

		0.396

		0.183

		1.000

		0.128

		0.356



		32

		5.60

		2.711

		0.632

		0.811

		0.189

		0.183

		0.198

		0.496

		0.150



		33

		5.36

		1.500

		0.883

		0.630

		0.370

		1.000

		1.000

		0.154

		0.214



		34

		5.65

		1.888

		1.021

		0.649

		0.351

		0.198

		0.183

		0.249

		0.305



		35

		6.07

		2.357

		0.817

		0.743

		0.257

		0.531

		1.000

		0.374

		0.267



		36

		6.27

		2.962

		0.771

		0.793

		0.207

		0.183

		0.531

		0.618

		0.212



		37

		8.68

		4.155

		0.581

		0.877

		0.123

		1.000

		1.000

		1.400

		0.108



		38

		6.44

		2.361

		0.937

		0.716

		0.284

		1.000

		1.000

		0.465

		0.189



		39

		7.26

		3.092

		0.959

		0.763

		0.237

		0.183

		0.198

		0.666

		0.390



		40

		7.78

		2.773

		1.071

		0.721

		0.279

		0.183

		1.000

		0.534

		0.521



		41

		7.44

		2.894

		0.938

		0.755

		0.245

		0.183

		0.781

		0.646

		0.273



		42

		7.10

		2.797

		1.062

		0.725

		0.275

		0.183

		0.531

		0.547

		0.501



		43

		7.83

		2.940

		1.120

		0.724

		0.276

		0.183

		0.183

		0.633

		0.528



		44

		8.04

		2.993

		1.083

		0.734

		0.660

		0.183

		0.183

		0.671

		0.456



		45

		8.48

		2.506

		0.969

		0.721

		0.279

		1.000

		1.000

		0.462

		0.427



		46

		8.57

		3.365

		0.886

		0.792

		0.208

		1.000

		1.000

		0.912

		0.283



		47

		7.86

		2.133

		0.954

		0.691

		0.309

		1.000

		1.000

		0.481

		0.139



		48

		9.00

		2.133

		0.954

		0.691

		0.309

		1.000

		1.000

		0.481

		0.139



		49

		9.30

		2.134

		1.462

		0.593

		0.407

		1.000

		1.000

		0.299

		1.326



		50

		9.93

		3.194

		1.204

		0.726

		0.274

		0.183

		0.253

		0.804

		0.824





good linear regression of correlation between experimental and predicted –log Sw. 

In previous study, Wang et al. [5] used molecular connectivity indices to develop a QSPR model for CHC’s. They achieved in correlating the three connectivity indices descriptors that reflect the contribution of clusters in a molecule to aqueous solubility that are important in describing the aqueous solubility of CHC’s. Another study reported by Delgado [16] demonstrated that CODESSA has been successfully in applying to develop QSPR model and carried out a correlation analysis to find the best QSPR model using a heuristic method. Delgado attained in obtaining the two descriptors that have definite physical meaning corresponding to different intermolecular interactions.

Table 4. The correlation matrix of all WHIM-3D descriptors used in QSPR studies


		

		-log Sw

		L1m

		L2m

		P1m

		P2m

		G1m

		G2m

		E1m

		E2m



		-log Sw

		1

		0.825

		0.705

		0.449

		-0.325

		-0.135

		0.097

		-0.238

		-0.049



		L1m

		

		1

		0.299

		0.814

		-0.671

		-0.269

		0.023

		-0.083

		-0.325



		L2m

		

		

		1

		-0.194

		0.265

		-0.214

		-0.096

		-0.454

		0.314



		P1m

		

		

		

		1

		-0.887

		-0.195

		-0.001

		0.151

		-0.604



		P2m

		

		

		

		

		1

		0.103

		-0.086

		-0.154

		0.567



		G1m

		

		

		

		

		

		1

		0.205

		0.263

		0.077



		G2m

		

		

		

		

		

		

		1

		-0.004

		0.003



		E1m

		

		

		

		

		

		

		

		1

		-0.131



		E2m

		

		

		

		

		

		

		

		

		1







Fig 1.  Plot of predicted –log Sw values versus the experimental –log Sw values of CHC’s in the training set.


In this study, the WHIM-3D descriptors were used to predict the aqueous solubility of CHC’s. WHIM descriptors are the molecular descriptors based on statistical indices calculated on the projections of the atoms along principal axes. They are built in such a way as to capture relevant molecular 3-dimensional information regarding molecular size, shape, symmetry, and atom distribution with respect to invariant reference frames [21, 22, 24]. The fact that the WHIM descriptor is derived from three-dimensional representing of a molecule, seems to indicate a connection between the molecular structures of the physicochemical properties of compounds. The result of this study demonstrated that the L1m and L2m that reflect the size of molecule is the most significant descriptor, as can be seen by its highest correlation values with –log Sw of CHC’s (Table 4). The other descriptors G1m and G2m that reflect the contribution of symmetry of the molecule are also important in describing the aqueous solubility of CHC’s compound. The positive value of the coefficient for all descriptors implies that a high size and symmetry of the CHC’s molecule correlates with decreased the solubility of the CHC’s. To test the predictive ability of the model obtained in this study (Eq. 6), the aqueous solubility data for 50 CHC’s taken from the Wang et al. [5] were predicted. The scatter plot of obtained predictive results together with their experimental values is given in Fig 2.  

Fig 2.  Plot of predicted –log Sw values versus the experimental –log Sw values of CHC’s in the testing set.

The prediction results are in good agreement with the experimental values. The high cross-validated coefficient correlation (Q2= 0,935) and low average absolute error (AAE = 0.31) observed indicated that the developed QSPR model is reliable and has good predictability.


CONCLUSION


QSPR studies are an important tool for research and knowledge of chemical compounds and it has been frequently used in medicinal chemistry and molecular design to investigate new drugs. Predictive QSPR model that is based on WHIM-3D is suggested in this study to correlate the aqueous solubility of 50 CHC’s. The application of the best model obtained to a testing set of 50 CHC’s demonstrates that the new model is reliable with good predictability. Besides, it was possible to construct new model by applying WHIM-3D approach without require any experimental physicochemical properties in the calculation of aqueous solubility.
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