A XANTHONE FROM THE STEM BARK OF MANGGIS HUTAN (Garcinia bancana)

Muharni^{1,*}, Dachriyanus², Husein H. Bahti³ and Supriyatna⁴

¹Department of Chemistry Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, Indonesia

²Department of Pharmacy, Faculty of Mathematics and Natural sciences, Andalas University, Padang, Indonesia

³Department of Chemistry Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, Indonesia

⁴Faculty of Pharmacy, Padjadjaran University, Bandung, Indonesia

Received 13 August 2007; Accepted 14 September 2007

ABSTRACT

A xanthone, 1,5-dihidroxy-3,6-dimethoxy-2,7-bis-(3-methylbutenyl)xanthone had been isolated from the stem bark of Garcinia bancana Miq. The structure of this compound was elucidated by analysis of spectroscopic data, especially using 1D and 2D NMR spectroscopic data.

Keywords : Xanthone, 1,5-dihidroxy-3,6-dimethoxy-2,7-bis-(3-methylbutenyl)xanthone, G. bancana

INTRODUCTION

Garcinia is the most important genus of the Guttiferae family, widely distributed in tropical Asia, Africa, and The genus is known to be rich in Polynesia [1]. oxygenated xanthone [2], prenylated xanthone [3], and polyisoprenylated benzophenones [4,5]. Some of them activities exhibit various biological such as antimicrobacterial, antioxidant, cytotoxic and anti malaria activities [6-9]. Garcinia bancana Mig. is distributed throughout Southern Thailand, Malaysia and Indonesia. In our continuing phytochemical investigation of Garcinia plants found in Indonesia, we have examined the stem bark of G. bancana. This plant is locally named manggis hutan [1,10]. In this paper we described the isolation and structure elucidation of compound (1,5-dihidroxy-3,6dimethoxy-2,7-bis-(3-methyl-butenyl)xanthone, from the methanol extract of the stem bark of G. bancana. This is the first report on the isolation of compound from this plant. The structure of this compound was determined based on their UV, IR, and NMR 1D and 2D spectroscopic data.

EXPERIMENTAL SECTION

General Experimental Procedure

UV and IR spectra were measured with ¹⁹ spectrophotometers Beckman DU-700 and Shimadzu FTIR 8400. ¹H and ¹³C NMR spectra was recorded JEOL JNM ECA-500 500 MHz (¹H) and 125 MHz (¹³C) using internal standard TMS. Vacuum liquid chromatography (VLC) was carried out using Merck Si gel 60 GF₂₅₄ (230-400 Mesh) and column chromatography using Si gel Merck G 60 (70-230

Mesh), thin layer chromatography (TLC) analysis was performed on precoated Si Gel plates (Merck Kiesel gel 60 GF_{254} , 0.25 mm 20 x 20 cm.

Plant material

Sample of the stem bark of *G. bancana* was collected on April 2006 from the Sarasah Bonta Payah kumbuh, Sumatera Barat. The plant was identified by the staff at the Herbarium Anda, Andalas University, Padang and a voucher specimen had been deposited at the herbarium.

Extraction and isolation

The powdered of the stem bark G *.bancana* (3 Kg) was extracted by maceration technique three times with hexane, dichloromethane and methanol respectively for 5 days at room temperature. Evaporation of each extract (n-hexane, dichloromethane and methanol) to dryness *in vacuo*, afford

^{*} Corresponding author.

Email address : muharnimyd@yahoo.co.id

butenyi/xant			
Posisi	δ _H (mult., <i>J</i> _{Hz})	δ _C	DEPT
1	12.98 (<i>s</i>)	159.7	С
2		112.2	С
3		164.3	С
3-OMe	3.92 (s)	56.2	CH₃
4	6.53 (s)	89.9	CH
4 ^a		157.0	С
5	5.58 (br s)	136.7	С
6		150.0	С
6-OMe	3.97 (s)	61.3	CH₃
7		131.5	С
8	7.62 (s)	116.7	СН
8 ^a		114.1	С
9		180,6	С
9 ^a		100,1	С
10 ^a		154.0	С
11	3.36 (<i>d</i> , 7.5)	21.6	CH ₂
12	5.23 (<i>t</i> , 7.5)	121.9	СН
13		132.2	С
14	1.80	18.0	CH₃
15	1.68	26.2	CH₃
16	3.42 (<i>d</i> , 7.3)	28.6	CH ₂
17	5.30 (<i>t</i> , 7.3)	1221	СН
18		133.8	С
19	1.76	26.0	CH ₃
20	1.74	17.9	CH ₃

Table 1. ¹H NMR and 13C NMR data (chloroform- d_1) for 1,5-dihidroxy-3,6-dimethoxy-2,7-bis-(3-methyl-butenyl)xanthone

n-hexana extract (30 g), dicloromethane (55 g) and methanol (30 g). Methanol extract was subjected to vacum liquid chromatography eluted with a gradient system (*n*-hexana, *n*-hexana: EtOAc = 9:1; 8:2; 7:3; 6:4 and EtOAc) to afford 5 fractions A1 – A5. Fraction 2 was further purified column chromatography (eluted with gradient system *n*-hexana, *n*-hexana : EtOAc = 9:1; 8:2; 7:3 and EtOAc) to afford 4 subfraction. Subfraction 2 after purification with recrystalization gave a pure compound (7 mg).

This compound obtained as a yellow crystal, UV: λ_{max} absorption at 261, 312 and 368 nm. IR (KBr) V_{maks} cm⁻¹ 3444 (OH), 2962, 2920 (C-H alifatic), 1651(carbonil chelating), 1600, 1569 dan 1465 cm⁻¹ (benzena derivated) and 1172 (C-O ether). ⁻¹H NMR (chloroform d_1 , 500 MHz) δ_H ppm, ⁻¹³C NMR (chloroform- d_1 , 125 MHz) δ_C ppm see Table 1, and correlation H-C HMQC, HMBC dan H-H COSY spectrum see Table 2.

RESULT AND DISCUSSION

The methanol extract of the stem bark of *G. bancana* was subjected to chromatographic purification to afford one xanthone compound. The structure was elucidating using 1D and 2D NMR spectroscopic data. The ¹³C NMR signals were assigned from DEPT,

Muharni,	et al.

Position H	HMQC	НМВС	COSY
1	C-1		
3-OMe	C-3-OMe	C-3	
4	C-4	C-4a	
5-OH	C-5		
6-OMe	C-6-OMe	C-6,	
8	C-8	C-10a	
	C 11	C 2 C 2	
H-11	0-11	C-13	п-12, п-14, H-15
H12	C-12	C-2	H-11 H-14
1112	0.12	02	H-15
14	C-14	C-12, C-13,	
		C-15	
15	C-15	C-12, C-13,	
	_	C-14	
16	C-16	C-6, C-7,	H-17, H-19,
47	0.47	C-18	H-20
17	C-17		H-16, H-19,
19	C-19	C-17 C-18	п-20
10	0.10	C-20	
20	C-20	C-17. C-18.	
-		C-19	

dimethoxy-2,7-bis-(3-methylbutenyl)xanthone

HMQC, HMBC and COSY spectras. The ^1H and ^{13}C spectra data also compared with those reported in the literature.

The pure compound was obtained as a yellow crystal. The UV spectrum showed λ_{max} absorption at 261, 312 and 368 nm characteristic to xanthone nucleus [11]. The IR spectrum exhibited absorptions for hydroxyl (3444), C-H aliphatic (2920, 2962), carbonyl (1651), aromatic (1600, 1569 and 1465 cm⁻¹) and ether (1172 cm⁻¹). The ¹H NMR and ¹³C HNMR spectra of compound (Table 1) showed characteristic signals for prenylated xanthone derivated [12]. 'Η NMR Spectrum showed peaks for one prenyl group at $[\delta_{H} 3.36 (2H, d, J=7.5), \delta_{H} 5.23 (1H, t, J=7.5), \delta_{H} 1.80$ (3H, s) and δ_H 1.68 (3H, s)], prenyl group others at [δ_H 3.42 (2H, d, *J*=7.3), δ_H 5.30 (1H, d, *J*=7.3), δ_H 1.36 (3H, s) and δ_H 1.74 (3H, s)], two methoxyl group at δ_H 3.97 (3H, s) and δ_H 3.92 (3H, s), two hydroxyl group at δ_H 12.98 (1H, s) and δ_{H} 5.58 (1H, br s) and two proton aromatic at δ_{H} 6.53 (1H ,s) and δ_{H} 7.62 (1H, s). DEPT spectrum showed six carbon methyl at δ_C 164.3 (C-3-OMe), 150.0 (C-6-OMe), 18.0 (C-14), 26.2 (C-15), 26.0 (C-19) and δ_{C} 17.9 (C-20) ppm, two carbon methylene at δ_{C} 21.5 (C-11), and δ_{C} 28.6 (C-16), four carbon methyne at δ_{C} 89.9 (C-4), 116.7 (C-8) 121.9 (C-12) and δ_{C} 122.1 (C-17) and thirteen carbon

Fig 6. HMBC correlations from two prenyl group

quaternary at $\delta_{\rm C}$ 159.7 (C-1), 112.2 (C-2), 164.3 (C-3), 157.0 (C-4a), 136.7 (C-5), 150.0 (C-6), 131.5 (C-7), 114.1 (C-8a), 180.6 (C-9), 100.1 (C-9a), 154.0 (C-10a), 132.2 (C-13), and $\delta_{\rm C}$ 133.8 (C-18) ppm.

From HMQC, the methylene proton signal $\delta_{\rm H}$ 3.36 ppm showed a connection to a carbon signal at δ_{C} 21.5 ppm and HMBC showed correlations between the methylene protons at δ_{H} 3.36 (2H, H-11) and quaternary carbons at δ_{C} 112.2 (C-2), 164.3 (C-3) and δ_{C} 132.2 (C-13). In the COSY spectrum showed that proton at δ_{H} 3.36 (H-11) coupled with a methyne group at δ_H 5.23 ppm (H-12) as well as with two methyl groups at δ_H 1.80 (H-14) and δ_H 1.68 (H-15). Signal at δ_{H} 3.42 (2H-16) connected to a carbon δ_{C} 28.58 and long correlations with carbons signal at $\delta_{\rm C}$ 150.0 (C-6), δ_C 131.5 (C-7) and δ_C 133.8 (C-18). In the COSY spectrum showed that proton coupled with a methylen proton at δ_{H} 5.30 (H-17), and methyl proton at δ_{H} 1.76 (H-19) and δ_{H} 1.74 (H-20). Furthermore, the position of the prenyl group at C-2 and C-7 were deduced from HMBC long range correlations between proton at 3,36 (H-11) with carbon at 112,2 (C-2) and 164,3 (C-3) and proton at 3.42 with carbon at 116,7 (C-8) and 131,4 (C-7). HMBC correlations from two prenyl group can see at Fig 6.

Fig 7. HMBC correlations in 1,5-Dihidroxy-3,6-dimethoxy-2,7-bis-(3-methyl-butenyl)xanthone.

In the HMQC spectrum also showed the proton methyl from methoxyl group at δ_H 3.92 connected to carbon signal at δ_{C} 56.2, proton at δ_{H} 3.97 connected to carbon at δ_{C} 61.9. In HMBC spectrum proton at δ_{H} 3.92 showed long correlation with carbon signal at 164,50 (C-3), and proton at δ_{H} 3,97 long range correlation to carbon at δ_{C} 150 (C-6) The methoxyl group were placed at C-3 and C-6, adjacent to the prenyl group due to its HMBC correlation with C-3 and C-6. In HMQC spectrum showed proton at δ_H 7.62 connected to carbon at δ_{C} 116.7 (C-8) and long correlation to carbon at δ_{C} 154 (C-10a), proton at $\delta_{\rm H}$ 6.53 connected to carbon at $\delta_{\rm C}$ 89.9 (C-4) and long correlation to carbon at δ_{C} 157 (C-4a). The position of the hydroxyl group were determined to be at δ_{C} 159,7 (C-1) and δ_{C} 136,7 (C-5). Correlation at HMBC spectrum can see at Fig 7.

Therefore was determined as 1,5-Dihidroxy-3,6dimethoxy-2,7-bis-(3-methyl-butenyl)xanthone. This is the first report on the isolation of compound from this plant.

CONCLUSION

Xanthone, prenylated xanthone type: 1,5-Dihidroxy-3,6-dimetoxy-2,7-bis-(3-methyl-butenyl)xanthone, had been isolated from methanol extract of stem bark *G. bancana*. The structure of this compound

ACKNOWLEDGEMENTS

was determined based on NMR data.

The authors thank the Herbarium Anda, Padang, Indonesia for identification of the plant specimen and LIPI Research Center for Chemistry, PUSPITEK, Serpong, Indonesia for spectrum measurement.

REFERENCES

- 1. Whitmore, M.A., 1973, *Tree Flora of Malaya: Forest Department*, Ministry of Primary Industries, Longman, 218.
- 2. Gopalakrishnan, G., and Banumathy, B., 2000, *Fitoterapia*, 71, 607-609
- Cao, S. G., Valerie, H. L., Wu, X .H., Sim, K.Y., Tan, B. H. K., Pereira, J. T., and Goh, S.H., 1988, *Tetrahedron*, 54, 10915-10924
- 4. Baggett, S., Protiva, P., Mazzola, E. P., Yang, H., Ressler, E.T., Basile, M.J., Weinstein, I.B., and Kennelly, E. J. 2005, *J. Nat. Prod.*, 68, 354-360.
- Lannang, A. M., Komguem, J., Ngninzeko, F. N., Tangmoua, J. G., Lonsti, D., Ajaz, A., Choudhary, M. I., Ranjit, R., Devkota, K. P., and Sondengam, B. L. 2005, *Phytochem.*, 66, 2351-2355
- Suksamrarn, S., Suwannapoch, N., Phakhodee, W., Thanuhiranlert, J., Ratanahukul, P., Chimnoi, N., and Suksamrarn, A. 2003, *Chem. Pharm. Bull*, 51(7), 857-859.
- Hay, A. E., Aumond, M. C., Mallet, S., Dumonted, V., Litaudon, M., Rondeau, D. and Richomne P. 2004, *J. Nat.Prod*, 67, 707-709.
- Mackeen, M. M.' Ali, A. M., Lajis, N. H., Kawazu, K., Hassan, Z., Amran, M., Hasbah, M., Mooi, L.Y., and Mohamed, S. M. 2000, *J. Ethnopharmacol.*, 72, 394-402.
- Ignatushchenko, M. V., Winter, R. W., Bachinger, H. P., Hinrichs, D. J., and Riscoe, M. K. 1997, *FEBS Lett.*, 409, 67-73.
- Heyne, K. 1987, *Tumbuhan Berguna Indonesia.* Jilid III, Yayasan SaranaWana Jaya. Jakarta, 1387.
- 11. Rukachaisirikul, V., Ritthiwigrom, T., Pinsa, A., Sawanghote, P., and Taylor, W.C. X., 2003, *Phytochem.*, 64, 1149-1156.
- 12. Goh, S. H., Jantan, I., Gray, A. I., and Waterman, P. G., 1992, *Phytochem.*, 31(4), 1383-1386.