THE EFFECTS OF BORON ADDITION AND PRESULFIDATION TEMPERATURE ON THE HDS ACTIVITY OF A Co-MoS₂/Al₂O₃ CATALYST

Usman, Takeshi Kubota, and Yasuaki Okamoto^{*}

Department of Material Science, Shimane University Matsue, 690-8504, Japan

Received 29 April 2005; Accepted 30 May 2005

ABSTRACT

The effect of boron addition was studied on the hydrodesulfurization (HDS) of thiophene over Co-MoS₂/B/Al₂O₃ (CVD-Co/MoS₂/B/Al₂O₃), which was prepared by a CVD technique using Co(CO)₃NO as a precursor of Co. The catalyst was characterized by means of NO adsorption, XPS, Raman Spectroscopy, FTIR, and TEM. The HDS activity of CVD-Co/MoS₂/B/AI₂O₃ catalyst increased as the boron content increased up to about 0.6 and 1.2 wt% B for the catalyst presulfided at 673 and 773 K respectively, followed by a decrease with a further addition of boron loading. In spite of the activity increase, the amount of NO adsorption on MoS₂/B/Al₂O₃ steadily decreased with increasing boron loading, suggesting that the dispersion of MoS₂ particles is decreased by the addition of boron. Selective formation of the CoMoS phase on CVD-Co/MoS₂/B/Al₂O₃ was achieved by the CVD technique. The TOF of the HDS over the CVD-Co/MoS₂/B/Al₂O₃ catalyst, defined by the activity per Co atom forming the CoMoS phase, increased as high as 1.6 and 1.9 times for the catalyst presulfided at 673 and 773 K, respectively. It is concluded that the addition of boron weakens the interaction between Mo oxides and Al₂O₃ surface, promoting the formation of the so called Co-Mo-S "pseudo" type II over CVD-Co/MoS₂/B/Al₂O₃ presulfided at 673 K. The Co-Mo-S "pseudo" type II is a metastable phase with the TOF value intermediate between Co-Mo-S type I and type II. With CVD-Co/MoS₂/B/AI₂O₃ presulfided at 773 K, the addition of boron promotes the formation of "real" Co-Mo-S type II, possibly by the formation of well-crystallized MoS₂ structure.

Keywords: Hydrodesulfurization; Co-Mo sulfide catalysts; Effect of boron addition; CVD technique; Turnover frequency

INTRODUCTION

Regulation about decreasing the sulfur content in petroleum feedstocks has become more and more strict in order to protect the environment and the living things. Hydrodesulfurization (HDS) of petroleum feedstocks has been, therefore, an indispensable reaction to produce clean fuels [1]. Sulfided Mo or W-based catalysts promoted by nickel and/or cobalt have been widely used for industrial HDS reaction [2,3]. Numerous studies [2-5] have already been devoted to understand the structure and reactivity of the catalytically active sites, the microscopic reaction mechanisms of HDS and hydrogenation, the effect of support and additives and so on. In spite of the fact that the HDS catalysts have been improved considerably, the catalytic performance is still required to be improved more to meet more severe requirements of legislative restriction of sulfur content in petroleum products [6].

Addition of boron has been reported to modify the dispersion of Mo on the surface of alumina [7,8].

The effect of boron addition on the activity of Co-Mo or Ni-Mo/Al₂O₃ catalysts has been widely studied [7,9-11]. Although some workers reported that the high acidity of alumina boria system increased the hydrocracking [9] and HDN [9-11] activity of Ni-Mo/B/Al₂O₃, many conflicting results were obtained in the previous studies. Li et al. [9] believed that the addition of boron up to 1 mol% increased the activity of Ni-Mo/Al₂O₃ catalysts for HDS of DBT, in contrast to the results by Lewandowski and Sarbak [10] that boron addition did not affect the activity of Ni-Mo/Al₂O₃ catalysts for the HDS of coal liquid. Stranick et al. [12] believed that the addition of boron to Al₂O₃ can improve the dispersion of Co and change the chemical states of Co in Co/Al₂O₃ catalysts. In addition, Morishige and Akai [8] indicated that boron addition decreased the dispersion of Mo in Mo/Al₂O₃ catalyst and weakens the interactions between Mo species and the Al₂O₃ surface. Thus, it is expected that boron added to Co-Mo or Ni-Mo/Al₂O₃ modifies both Mo and Co(Ni) species. It will be easy to understand the effects of boron addition if we could separate the effects of

^{*} Corresponding author.

Email address : yokamoto@riko.shimane-u.ac.jp

boron addition on Mo and Co phases. In the present study, we tried to clarify the effect of boron addition on the Co-Mo-S phase supported on Al_2O_3 .

In a previous study [13-16], we have shown that when a supported Mo sulfide catalyst is exposed to a vapor of Co(CO)₃NO (CVDfollowed evacuation technique). by and resulfidation, the Co species in the resultant CVD-Co/MoS₂ catalysts are selectively transformed into the Co-Mo-S phase and accordingly the amount of Co in the catalyst represents the amount of the Co-Mo-S phase. In the CVD-Co/MoS₂ catalysts, the edge of MoS₂ particles is fully covered by the Co-Mo-S phase. It is, therefore, expected that the CVDtechnique provides a strong clue to understand the nature of the boron addition to Co/MoS₂/Al₂O₃ catalysts. In the present study, we investigated the effect of boron addition on the HDS activity of CVD-Co/MoS₂/Al₂O₃ catalysts to understand the effects in terms of the number of active sites and their intrinsic activity.

EXPERIMENTAL SECTION

Catalyst Preparation

A series of Mo/Al₂O₃-B₂O₃ was prepared by a double impregnation technique. γ -Al₂O₃ (180 m² g⁻¹) was first impregnated with a H₃BO₃ solution, followed by a calcination at 773 K for 5 h. The boron contents were 0.3, 0.6, 0.9, 1.2, and 2.5 wt% B. Then, the Al₂O₃-B₂O₃ materials were impregnated with (NH₄)₆Mo₇O₂₄.4H₂O and calcined at 773 K for 5 h. The Mo loading was 13 wt% MoO₃. The catalyst was presulfided at either 673 K for 1.5 h or 773 K for 2 h in a stream of H₂S/H₂. The detailed procedures have been described elsewhere [7,13].

Co-Mo/B/Al₂O₃ catalysts were prepared by introducing Co(CO)₃NO into MoS₂/B/Al₂O₃ by means of a chemical vapor deposition (CVD) technique. The CVD technique has been described in detail previously [13,14]. In brief, a vapor pressure of Co(CO)₃NO at 273 K was used to prepare Co(CO)₃NO/MoS₂/B/Al₂O₃, followed by a sulfidation at 673 K in a 10% H₂S/H₂ stream. The thus prepared is denoted catalyst CVD-Co/MoS₂/B/Al₂O₃ followed by the presulfidation temperature in parentheses if necessary, hereinafter. The amount of Co was analyzed by XRF. The detailed procedures have been described elsewhere [16].

Reaction Procedure

The initial activity of the freshly prepared catalyst for the HDS of thiophene was evaluated at 623 K using a circulation reaction system made of

glass under mild reaction conditions (initial H_2 pressure, 20 kPa). The HDS activity was calculated on the basis of the accumulated amount of H_2S . The detailed reaction procedures have been reported previously [13].

Characterization

The amount of NO adsorption on a catalyst was measured at room temperature by a pulse technique after cooling the catalyst sample from the presulfidation temperature in a $10\% H_2S/H_2$ stream. The sample was purged for 15 min with a He stream before periodical admissions of a pulse of 10% NO/He. The detailed procedures have been reported elsewhere [13,17].

The FTIR spectra of B/Al_2O_3 were recorded in a transmission mode at room temperature on a single-beam FTIR spectrophotometer (JASCO, FTIR-620V). A self-supporting wafer of B/Al_2O_3 (32 mg cm⁻²) was evacuated in an *in situ* IR cell at 773 K for 1 h (< 1 x 10⁻³ Pa). After the sample was cooled to room temperature, IR spectra were measured and the background spectrum was subtracted. The spectra of calcined- Al_2O_3 (ALO-7) and $MoO_3/B/Al_2O_3$ (2.5 wt% B) were also recorded for comparison.

The Laser Raman spectra of $MoO_3/B/Al_2O_3$ were obtained at room temperature in air on an NRS-2100 spectrometer (JASCO) equipped with a CCD detector. The 514.5 nm line of an Ar⁺ laser was used for excitation at an intensity of 10 mW at the source.

The XP spectra of MoO₃/B/Al₂O₃ catalyst samples were measured on an ESCA 750 spectrometer (Shimadzu) using a Mg K $\alpha_{1,2}$ radiation (1253.6 eV). The sample powder was mounted on a holder using a double adhesive tape. The binding energies were referenced to the Al2p level (74.5 eV) due to Al₂O₃.

TEM observations were made on an electron microscope Hitachi H-800 with an accelerating voltage of 200 keV for CVD-Co/MoS2/B/Al2O3 (673). The catalyst sample was dispersed in heptane in an N₂-filled glove-bag. The distributions of MoS_2 or WS_2 slab size and stacking number were calculated over 350-450 particles.

RESULTS AND DISCUSSION

Fig. 1 depicts the thiophene HDS activity over $CVD-Co/MoS_2/B/Al_2O_3$ catalyst as a function of B content. It is clearly shown in Fig. 1, the addition of a proper amount of boron increased the HDS activity of $CVD-Co/MoS_2/B/Al_2O_3$ catalyst, irrespective of the presulfidation temperature. The optimum loading of boron was ca. 0.6 and 1.2 wt%

Figure 1 HDS activity of CVD-Co/MoS₂/B/Al₂O₃ presulfided at 673 K (open symbol) and 773 K (closed symbol) as a function of boron loading

B for CVD-Co/MoS₂/B/Al₂O₃ (673) and CVD-Co/MoS₂/B/Al₂O₃ (773), respectively. The HDS activity decrease at a higher boron loading was more prominent for CVD-Co/MoS₂/B/Al₂O₃ (673) compared to that of CVD-Co/MoS₂/B/Al₂O₃ (773). In conformity with the present results, Ramírez *et al.* [18] reported that boron addition into Co-Mo/Al₂O₃ catalysts enhanced thiophene HDS activity and the maximum activity was attained at the boron content of 0.8 wt% B.

In spite of the activity increases in Fig. 1, the amount of NO adsorption on $MoS_2/B/AI_2O_3$ decreased with increasing B loading as shown in Fig. 2. Taking into consideration the selective adsorption of NO molecules on the edge sites of MoS_2 particles [19], the results in Fig. 2 suggest that the dispersion of MoS_2 clusters is decreased by the addition of boron.

The amount of Co anchored by the CVD technique over MoS₂/B/Al₂O₃ is summarized in Table 1. Obviously, it decreased as the boron content increased. Fig. 3 shows the Co/Mo atomic ratio of the CVD-Co/MoS₂/B/Al₂O₃ catalysts as a function of the NO/Mo ratio of the MoS₂/B/Al₂O₃ samples. The Co/Mo ratio is proportional to the NO/Mo ratio, this being in conformity with our previous results for CVD-Co/MoS₂/support (support: Al₂O₃, TiO₂, ZrO₂, and SiO₂) [13]. Taking into consideration selective adsorption of NO molecules on the edges of MoS₂ particles, the proportional correlation in Fig. 3 demonstrates that the Co sulfide species admitted by the CVD technique are located on the edges of MoS₂ particles in MoS₂/B/Al₂O₃.

Figure 2 NO adsorption of $MoS_2/B/Al_2O_3$ presulfided at 673 K as a function of boron loading.

Table 1 Amount of cobalt content and TOF over CVD-Co/MoS_2/B/Al_2O_3 catalysts

Boron	Cobalt	TOF (h ⁻¹)		
content	loading	Presulfided	Presulfided	
(wt% B)	(wt%)	at 673 K	at 773 K	
0	2.70	8.4	8.35	
0.3	2.45	10.7	10.43	
0.6	2.33	11.5	11.65	
0.9	1.81	13.5	13.9	
1.2	1.67	13.3	16.2	
2.5	1.54	12	16	
4.7	0.84	13.1		

In order to explain the activity increase of CVD-Co/MoS₂/B/Al₂O₃ in Fig. 1, the TOF (turnover frequency, h⁻¹) of the reaction is plotted in Fig. 4 against the loading of boron. We calculated the TOF on the basis of the Co content in the catalyst. It is clearly shown from Fig. 4 that the TOF is increased by the addition of boron up to ca. 0.8 and 1.2 wt% B for CVD-Co/MoS₂/B/Al₂O₃ (673) and CVD-Co/MoS₂/B/Al₂O₃ (773), respectively, and this trend levels off with a further addition of boron. Topsøe et al. [2], defined two types of the Co-Mo-S phase depending on the intrinsic activity, Co-Mo-S type I and type II. Co-Mo-S type II, which is formed by high temperature sulfidation (875-1275 K), is about two times more active for the HDS of thiophene than Co-Mo-S type I formed by low temperature sulfidation (675 K). Based on the definition by Topsøe, the TOF over boron-free CVD-Co/MoS₂/Al₂O₃ presulfided at 673 K is concluded as Co-Mo-S type I

Figure 3 Correlation between the Co/Mo atomic ratio and NO/Mo mole ratio as a function of boron loading. The catalyst presulfided at 673 K.

Figure 5 I(B1s)/I(Al2p) XPS intensity ratio for $MoO_3/B/Al_2O_3$ as a function of boron loading. A theoretical line assuming a monolayer dispersion of B is shown.

The TOF over CVD-Co/MoS₂/B/Al₂O₃ (673) (> 0.8wt% B) is 1.6 times as high as that of boron-free CVD-Co/MoS₂/Al₂O₃ (673), being in agreement with the previous study on CVD-Co/MoS₂/SiO₂ [13]. On the basis of the results, we previously concluded the formation of Co-Mo-S type II in CVD- $Co/MoS_2/B/Al_2O_3$ (673) [7] as well as CVD-Co/MoS₂/SiO₂ (673) [13]. However, as shown in Fig.5, the TOF over CVD-Co/MoS₂/B/Al₂O₃ is further increased by the presulfidation at 773 K. The TOF over CVD-Co/MoS₂/B/Al₂O₃ (773) is 1.9 times as high as that over boron-free CVD-Co/MoS₂/Al₂O₃ (673). The extent of the increase in TOF being consistent with that reported by Topsøe et al. [2] for the shift from Co-Mo-S type I to type II. Accordingly, it is concluded that the Co-Mo-S phase in CVD-Co/MoS₂/B/Al₂O₃ (773) is classified to "real" Co-Mo-S type II defined by Topsøe et al. [2]. The Co-Mo-S phase, which is observed for CVD-Co/MoS₂/B/Al₂O₃ (673), with a TOF value intermediate between Co-Mo-S type II and type I, is defined as Co-Mo-S "pseudo" type II hereinafter.

Loading of boron (Wt % B) Figure 4 TOF of the thiophene HDS over CVD-Co/MoS₂/B/Al₂O₃ presulfided at 673 K (open circle) and 773 K (closed circle) as a function of boron loading.

On the basis of the results, we instead propose that Co-Mo-S pseudo type II and type II are formed on the edge of fully sulfided MoS₂ particles having no strong interactions with the support in contrast to Co-Mo-S type I and that pseudo type II is correlated to a distorted structure of MoS₂ particles, while type II to a well crystallized MoS₂ structure. We concluded that there are, at least, two roles of boron addition to CVD-Co/MoS₂/Al₂O₃ that is boron weakens the interaction between Mo oxides and Al₂O₃ surface, promoting the formation type CoMoS pseudo over CVDof $Co/MoS_2/B/AI_2O_3$ (673), and boron accelerates the formation of well crystallized MoS₂ structure to form the "real" CoMoS type over CVD-Co/MoS₂/B/Al₂O₃ (773).

In order to evaluate the dispersion of boron on the Al_2O_3 surface, the XPS intensity ratio I(B1s)/I(Al2p) is plotted against the boron loading in Fig. 5. A good linear correlation was obtained and the slope of the line was in good agreement with the theoretical intensity ratio based on Kerkhof-Moulijn monolayer model [24]. These results indicate that boron atoms added by the impregnation are highly and homogeneously dispersed, forming monolayer on the alumina surface up to 2.5 wt% B, in line with the results of Morishige and Akai [8].

Fig. 6 depicts the IR spectra of the OH stretching region of the series of B/Al_2O_3 . The spectra of the Al_2O_3 support and $MoO_3/B/Al_2O_3$ (2.5 wt% B) are also shown. As shown in Fig.6, the IR spectrum of alumina exhibits well-defined OH bands at 3772, 3727, 3677, and 3580 cm⁻¹, in good agreement with those of other workers [25-27]. The 3772, 3727, and 3677 cm⁻¹ bands have been assigned to the most basic, basic, and acidic hydroxyl groups respectively, and the band at 3580 cm⁻¹ to hydrogen-bonded hydroxyl groups [25,26].

Figure 6 FTIR spectra of OH groups of a) Al_2O_3 ; b) $B/Al_2O_3(0.3 \text{ wt}\% \text{ B})$; c) $B/Al_2O_3(0.6 \text{ wt}\% \text{ B})$; d) $B/Al_2O_3(1.2 \text{ wt}\% \text{ B})$; e) $B/Al_2O_3(2.5 \text{ wt}\% \text{ B})$; and f) $MoO_3/B/Al_2O_3(2.5 \text{ wt}\% \text{ B})$.

The addition of 1.2 wt% boron resulted in depletion of the intensity of the IR bands at 3772 cm⁻¹ and 3727 cm⁻¹, indicating that boric acid preferentially reacts with the basic alumina hydroxyl groups. The increase of boron loading up to 2.5 wt% B resulted in an almost complete loss of all the OH groups of Al_2O_3 with a new band appearing at 3690 cm⁻¹ that corresponds to borate-OH groups, in agreement with the observation of DeCanio and Weissman [25]. In their FTIR analysis of borate-promoted Ni-Mo/Al₂O₃, DeCanio and Weissman [25] reported a complete loss of the OH groups of alumina at 1.5 wt% B. It is clearly shown by the FTIR peak of OH groups of MoO₃/B/Al₂O₃ (2.5 wt% B) in Fig. 1 that the OH groups of boron oxides are consumed by the impregnation of Mo oxides. This indicates that Mo oxides are anchored to the OH groups of boron oxides, when the OH groups of alumina are diminished by the addition of boron, leading to weakened interactions between the Mo oxides and the alumina surface.

The Raman spectra of $MoO_3/B/Al_2O_3$ are shown in Fig. 7. Fig. 7 obviously shows that only a band at ca. 960 cm⁻¹ appears for the boron-free catalyst, which is assigned to a Mo=O fundamental stretching vibration mode due to small Mo oxide clusters like paramolybdate species [28]. It is likely that the formation of MoO_3 on the boron-free catalyst is entirely excluded by the absence of the sharp peaks due to MoO_3 (Fig. 7). As for the catalysts with boron content up to 0.6 wt% B, the spectra are almost similar to the spectrum of the boron free catalyst, except a very small shoulder peaks at around 990 and 820 cm⁻¹. When the loading of boron reached 0.9 wt% B, a new set of clearly visible bands, which are assigned to

Figure 7 Raman spectra of $MoO_3/B/Al_2O_3$: a) 0 wt% B, b) 0.3 wt% B, c) 0.6 wt% B, d) 0.9 wt% B, and e) 1.2 wt% B.

Table	2	Averaged	ра	article	size	ar	ld	averaged
number	of	stackings	of	MoS ₂	/B/Al ₂ 0	D₃	as	observed
bv TEM		-						

~,				
Boron content	Averaged particle	Averaged		
(wt% B)	size (nm)	number		
		of stackings		
0	4.42	1.40		
0.6	4.71	1.66		
1.2	5.01	1.82		
2.5	5.62	1.71		

crystalline MoO₃, appeared along with a 969 cm⁻¹ band. When the loading of boron reached 1.2 wt% B, the peaks due to crystalline MoO₃ predominated at the expense of the highly dispersed Mo oxides characterized by the band around 960-970 cm⁻¹. These results suggest that the addition of boron decreases the dispersion of Mo oxides on the surface of Al_2O_3 .

The averaged stacking number and slab length, as calculated from the TEM images of the MoS₂/B/Al₂O₃ are summarized in Table 2. As it is shown in Table 2, the addition of boron promotes the formation of highly stacked MoS_2 particles (≥ 2 layer) until 1.2 wt% of boron, and this trend levels off at a higher loading of boron. With the size of MoS₂ particles, the boron addition obviously increases the size of MoS2 particles. The most abundant slab length is in the range of 4-8 nm for the boron-containing catalysts, in contrast to 2-6 nm for the boron-free catalyst. The size of MoS₂ slabs seems continuously increased until the highest loading of boron tested in this research, in conformity with the tendency observed for the NO adsorption (Fig. 2). Larger size of MoS₂ particles will accommodate just a smaller amount of Co to produce the CoMoS phase, in conformity with the

decreasing amount of Co incorporated on the MoS_2 edges of the catalyst by the addition of boron, as presented in Table 2. These results are apparently related to the decrease of the HDS activity at a higher loading of boron (> 0.6 wt%) in Fig. 1.

CONCLUSION

In the present study, we tried to clarify the effect of boron addition on the thiophene HDS activity and the intrinsic activity over $Co/MoS_2/Al_2O_3$. The CVD technique was used to introduce cobalt into the $MoS_2/B/Al_2O_3$ catalyst, in which all the Co atoms form the active sites. The catalysts were characterized by NO adsorption, XPS, Raman spectroscopy, FTIR, and TEM. The salient findings in the present study are as follows:

- 1. A proper amount of boron addition enhances the HDS activity of CVD-Co/MoS₂/Al₂O₃, irrespective of the presulfidation temperature.
- 2. Boron addition weakens the interaction between Mo oxides and Al_2O_3 surface, hence decreases the dispersion of MoS_2 particles on the Al_2O_3 surface.
- It is proposed that the addition of boron promotes the formation of pseudo Co-Mo-S type II over CVD-Co/MoS₂/Al₂O₃ presulfided at 673 K. The Co-Mo-S pseudo type II is a metastable phase with the TOF value intermediate between Co-Mo-S type I and type II.
- With CVD-Co/MoS₂/B/Al₂O₃ presulfided at 773 K, the addition of boron accelerates the formation of well-crystallized MoS₂ structure to form real Co-Mo-S type II.
- 5. The CVD technique, in which Co are selectively anchored to the MoS₂ edges of MoS₂/B/Al₂O₃, is a promising technique to investigate the nature of additive effects on HDS catalysts on the basis of the number of active sites and their intrinsic activity.

REFFERENCES

- 1. Song C., 2003, Catal. Today, 86, 211
- Topsøe H., Clausen, B.S., and Massoth, F. E., 1996, Catalysis: Science and Technology, J.R. Anderson, M. Boudard, Eds., Springer-Verlag: Berlin, , Vol.11, p.1
- 3. Kabe K., Ishihara, A., and Qian, W., 1999, *Hydrodesulfurization and Hydrodenitrogenation*, Kodansha, Tokyo
- 4. Chianelli R. R., 1984, *Catal. Rev.-Sci. Eng.* 26, 361

- 5. Prins R., de Beer V. H. J., and Somorjai, G. A., 1989, *Catal. Rev. Sci. Eng.*, 31, 1
- 6. Song C., and Ma, X. 2003, *Appl. Catal. B*, 41, 207
- 7. Usman, Kubota, T., Araki, Y., Ishida, K., and Okamoto, Y., 2004, *J. Catal.* 227, 523
- 8. Morishige H. and Akai. Y., 1995, *Bull. Soc. Chim. Belg.*, 104, 4
- 9. Li D., Sato, T., Imamura, M., Shimada H., and Nishijima, A., 1998, *Appl. Catal. B*, 16, 255
- 10. Lewandowski M. and Sarbak, Z., 2000, *Fuel*, 79, 487
- 11. Ferdous D., Dalai, A. K., and Adjaye, J., 2004, *Appl. Catal. A*, 260, 153
- 12. Stranick M. A., Houalla, M., and Hercules, D.M., 1987, *J. Catal.*, 104, 396
- 13. Okamoto Y., Ochiai, K., Kawano, M., Kobayashi, K., and Kubota, T., 2002, *Appl. Catal. A*, 226, 115
- 14. Okamoto Y., Ishihara, S., Kawano, M., Satoh, M., and Kubota, T., 2003, *J. Catal.*, 217, 12
- 15. Okamoto Y. and Kubota, T., 2003, *Catal. Today* 86, 31
- 16. Okamoto Y., Ochiai, K., Kawano, M., and Kubota, T., 2004, *J. Catal.*, 222, 143
- 17. Okamoto Y., Kawano, M., Kawabata, T., Kubota, T., and Hiromitsu, I., 2005, *J. Phys. Chem. B*, 109, 288
- Ramírez J., Castillo, P., Cedeño, L., Cuevas, R., Castillo, M., Palacios, J. M., and Agudo, A.L., 1995, *Appl. Catal. A*, 132, 317
- 19. Topsøe N. –Y. and Topsøe, H., 1982, J. Catal., 77, 293
- 20. Okamoto Y., Kato, A., Usman, Sato, K., Hiromitsu, I., and Kubota, T., unpublished results
- 21. Breysse M., Portefaix, J. L., and Vrinat, M., 1991, Catal. Today, 10, 489
- 22. Okamoto Y., Imanaka, T., and Teranishi, S., 1981, *J. Phys. Chem.*, 85, 3798
- 23. Cattaneo R., Weber, T., Shido, T., and Prins, R., 2000, *J. Catal.*, 19, 225
- 24. Kerkhof F. P. J. M. and Moulijn, J. A., 1979, *J. Catal.*, 83, 1612
- 25. DeCanio E. C. and Weissman, J. G., 1995, *Coll. and Surf. A*, 105, 123
- DeCanio E. C., Edwards, J. C., Scalzo, T. R., Storm, D. A., and Bruno, J. W., 1991, *J. Catal.*, 132, 498
- 27. Okamoto Y. and Imanaka, T., *J. Phys. Chem.*, 1988, 92, 7102
- Okamoto Y., Ochiai, K., Kawano, M., Kobayashi, K., and Kubota, T., 1988, *Appl. Catal. A*, 226, 115