The Effect of Ingredients Mixing Sequence in Rubber Compounding upon Vulcanization Kinetics of Natural Rubber: An Autocatalytic Model Study

Abu Hasan¹*¹, Rochmadi², Hary Sulistyo², and Suharto Honggokusumo³

¹Department of Chemical Engineering, State Polytechnic of Sriwijaya, Jl. Sriwijaya Negara, Bukit Besar, Palembang 30139, Indonesia
²Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafindo no 2, Yogyakarta 55281, Indonesia
³Gapkindo (The Indonesian Rubber Association), Jl. Cideng Barat no 62A, Jakarta 10150, Indonesia

Received June 6, 2017; Accepted July 30, 2018

ABSTRACT

This study examined the effect of ingredients mixing sequence to the vulcanization kinetics of natural rubber. The effects of mixing temperature, vulcanization temperature, and the carbon black type upon the kinetics were also studied by using rheography and an autocatalysis reaction model approach. The results showed that this model is good in providing information on vulcanization reaction kinetics of natural rubber. High vulcanization temperature resulted in high reaction rate constant. The more black carbon mixed at the beginning of the rubber mixing process, the higher reaction rate constant would be. The mixing of carbon black and rubber chemicals mixed into the rubber subsequently resulted in the higher reaction rate constant compared with that of simultaneously.

Keywords: autocatalysis; kinetics; mixing sequence; natural rubber

INTRODUCTION

Due to the sulfur vulcanization invented by Charles Goodyear (1839), natural rubber was used widely as it has better both physical and chemical properties, such as oxidation resistance and the change from thermoplastic to a thermostet. These properties changes cause the change of rubber characteristic from soft plastic to hard elastic [1] and were influenced by the vulcanization reaction of sulfur and rubber backbone [2-3]. This reaction initially, accelerator and activator formed active accelerator complex. The one and rubber backbones reacted to form active sulfurating agent and rubber bound intermediate, then followed by network formation with initial polysulfide crosslinks. Subsequently, network maturation process could be found. In the last stage, crosslink shortening with additional crosslink, crosslink destruction with main chain modification (cyclic sulfide) and s-s bond interchange (pendent sulfidic group) are included [4]. The rheometer is one of the equipment to observe this reaction. The rheometer principle is based on the assumption that all reactions occur during vulcanization proportional to the rubber stiffness change.

Most of researcher study the vulcanization using rheometer [5], various tools used by researchers to observe vulcanization reaction kinetics [6], utilized short wave of infrared radiation [7], monitored vulcanization reaction with online ultrasonic [8], used SANS [9], and used NMR [10] as well as used WAXD [11]. Some other researchers used DCS to observe vulcanization [12-16]. Kinetic model using rheograph has been widely

* Corresponding author.
Email address : abu_hasan@polsri.ac.id

DOI: 10.22146/ijc.25707

Abu Hasan et al.
implemented [17-21] but the autocatalytic model using rheometer to observe curing region was first done [13] and [22-23]. Another models and reaction mechanism using rheometer are reported [24-28] as well as [29-30] studied vulcanization and devulcanization kinetics models. Vulcanization kinetics is also studied by the researches using natural rubber and synthetic rubbers like that are illustrated in literature as shown in the literature [31-41]. The physical properties of rubber vulcanizates, such as abrasion resistance, not only influenced by vulcanization reaction but also influenced by the mixing process. Wang in his study, first, oil was added after the carbon black has been incorporated into the rubber, and second, oil was added into the rubber together with the carbon black. The first provided a higher abrasion resistance compared with the second one [42].

From the point of view, in this research, the autocatalytic model reported by Manchado et al. [13] was used to study the influence of the mixing sequence of rubber chemicals and filler into the rubber upon the kinetics.

EXPERIMENTAL SECTION

Materials

The ribbed smoked sheet-1 (RSS-1) produced in Indonesia and carbon black filler N 330 and N 660 type from Cobot Indonesia were raw materials employed in this research. The rubber chemicals comprised of sulfur, tertbutyl benzothiazole sulphenamide (TBBS), tetramethyl quinone (TMQ), zinc oxide (ZnO), stearic acid, and processing oil. All materials and chemicals were the commercial grades without any treatment.

Instrumentation

The equipment used in this research were open two-roll mill and rheometer. Rheograph was used to study the kinetics of vulcanization reaction.

Procedure

Sample A

Table 1 illustrates the natural rubber formula. The first sequence illustrates the mastication and milling of rubber, rubber chemicals, and filler at a mixing temperature of 60 °C and the mixing sequence, respectively. These rubber samples were called A. Meanwhile, the additional sequence of carbon black followed the sequence in Table 2 is coded as 1. Thus, this sample is then called A1. Rubber initially was masticated within 5 min, followed by additional ZnO and stearic acid that were milled within 2 min. TMQ was subsequently added into the mix and milled for 1 min. Carbon black at the amount of 10 phr was added into the mix (CB_1) and then milled for 2 min. The remains of carbon black about 40 phr were added into the mix together with oil (CB_2+oil) and then milled for 4 min. The addition of TBBS and sulfur took 1 min for milling time on each. Using the same procedure of A1, the A2, A3, and A3 could be found in the following of code 2, 3 and 4 in Table 2.

Sample B

The second mixing process using the formula in Table 1, was conducted in accordance with the sequence and the time each sequence needed and mixed at a mixing temperature of 60 °C. The sample in this process was then called B in which rubber was masticated for 1 min then followed by the addition of stearic acid and milled for 1 min. As subsequence of this process, sulfur and ZnO were added into the mix and milled for 2 min as well as carbon black at the amount of 10 phr that was added into the mix (CB_1) and milled for 3 min. The remains of carbon black about 40 phr were added into the mix along with oil (CB_2+oil) and milled for 7 min. Following this process, TBBS was added into the mix was milled for 6 min and TMQ needed 1 min for milling time. The addition process of carbon black into the rubber was performed using a method applied to the sequence as shown in Table 2. The samples were, at last, designated as B1, B2, B3, and B4.

Sample C

By using a procedure equal to that of in B and using the sequential addition of carbon black into rubber as listed in Table 2 code 1, sample C1, which, in this case, used carbon black type N 660 as the filler, was able to be found. The sample of C was, at last, called as C1, C2, C3, and C4.

<table>
<thead>
<tr>
<th>Code</th>
<th>CB_1 phr</th>
<th>CB_2+oil phr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1. Natural rubber formula

<table>
<thead>
<tr>
<th>Code</th>
<th>Materials</th>
<th>phr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RSS-1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>ZnO</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Stearic acid</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Carbon Black N 330 and 660</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Paraffinic oil</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>TMQ</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>TBBS</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>Sulfur</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 2. The addition method of carbon black into natural rubber under the rubber mixing process
Both samples of B1 and C1 were on only milled and mixed at a mixing temperature of 60 °C, but also held at 55, 65, and 70 °C.

Sample D

The third mixing process, the formula in Table 1 was applied too for the process of mixing process as well following the sequence and time allocated for each mixing and mixed at a mixing temperature of 60 °C. Rubber in this process was masticated for 3 min. Subsequently, of the total amount of 10 phr of the total amount of 50 phr, was added and milled for 2 min at the beginning of the mixing (CB_1). The remains of 40 phr together with oil, in turn, was added into the rubber (CB_2 + oil) and required 5 min for milling. ZnO and stearic acid were then added and milled for 2 min, followed by addition of TMQ, sulfur, and TBBS milled for 1 min on each. This process resulted in a sample of D1. The sample of D comprised also of D1, D2, D3, and D4.

All rubber compounds A, B, C, and D after the milling process were vulcanized on the temperature of 150 °C, except on the samples A1 and D1. This vulcanization were carried out at the temperature of 140, 150, 160, and 170 °C.

Study of vulcanization kinetics model

The change of rubber stiffness caused by vulcanization reaction produces torsion evaluated by rheometer and as a time function. The degree of curing (α) can be conducted using equation 1 as follows:

\[
\alpha = \frac{\text{torque at } t_{\text{after}} - \text{lower torsion}}{\text{higher torsion} - \text{lower torsion}}
\]

(1)

After that, the relationship between α and t is allocated. The slope of curve is called as \(\frac{d\alpha}{dt} \) and obtained by the following equation:

\[
\frac{d\alpha}{dt} = \frac{(\alpha_{\text{after}} - \alpha_{\text{before}})}{(t_{\text{after}} - t_{\text{before}})}
\]

(2)

To get the value of m and n which is the order of the reaction then made the relationship between \(\frac{d\alpha}{dt} \) and \(\alpha \) as follows:

\[
\frac{d\alpha}{dt} = k \alpha^m (1 - \alpha)^n
\]

(3)

\[
k = k_0 \exp \left(-\frac{E}{RT}\right)
\]

(4)

where m and n were the order of reaction, k reaction rate constant, \(k_0 \) pre-exponential, E activation energy and T absolute temperature.

Equation 3 is a representation of the chemical reaction kinetics equation introduced by Manchado et al. [13]. He observed S shape on curing region using autocatalytic model approach.

Using SSE method, the difference between the experimental data and interpolation of \(\frac{d\alpha}{dt} \), at the SSE minimum, the values of k, m and n could be determined.

RESULT AND DISCUSSION

Sample A

Rheograph on curing region in a sample of A illustrates in Fig. 1. It describes the relation between torque and vulcanization time on different rubber mixing process (RMP). It explains that the sample of A2 has the highest torque followed by A1, A3, and A4 respectively. This illustration describes RMP influences torque in a sample of A generally. A large amount of carbon black added at the beginning of RMP causes the increase of torque.

Sample A1. Fig. 2 shows that vulcanization temperature influences torque on curing region in a sample of A1. It...
Fig 3. Relation between torque and vulcanization time in sample of B

Fig 4. Relation between torque and vulcanization time in sample of B1 in various temperatures of milling process

Fig 5. Relation between torque and vulcanization time in sample of C

Sample B

Fig. 3 informs the influence of RMP toward torque on curing region sample of B. It describes the relation between torque and vulcanization time on different RMP. The highest torque was in a sample of B1 followed by a sample of B2, B3, and B4 respectively. A large amount of carbon black added at the beginning of the RMP of B causes the low torque.

Sample B1. Fig. 4 shows that the influence of RMP temperature in a sample of B1 on curing region toward torque. This figure describes the relation between torque and vulcanization time on different mixing temperature. In that illustration, it is clearly seen that high RMP temperature results in low torque. The highest torque is in RMP temperature of 55 °C followed by 60, 65, and 70 °C respectively. The same occurrence in a sample of B1 also happened in a sample of C1.

Sample C

Fig. 5 shows that the influence of RMP on a sample of C on curing region to torque. This figure describes the relation between torque and vulcanization time on different RMP. Based on that illustration, it is clearly seen that the more carbon black added at the beginning of RMP sample of C, the torque is relatively stable. This fact shows that the large particle size of carbon black type N 660 has little influence to torque on a variety of RMP sample of C.

Sample C1. Fig. 6 explains the influence of mixing temperature in a sample of C1 toward torque too. This
The calculation based on an autocatalysis model for vulcanization kinetics reported by Manchado et al. [13] was listed in Table A in the appendix. Calculation of the reaction rate constant k and the order reactions m and n is based on equations 1, 2, 3, and 4. The degree of curing (α) is generated rheography and calculated on the basis of equation 1 as stated in Table A column 3. Then the relationship between α and vulcanization time t is conducted. The slope of this curve is $\frac{d\alpha}{dt}$. The relationships between $\frac{d\alpha}{dt}$ and α produce k, m, and n as
Table 3. Reaction rate constant and reaction order sample of A, A1, B, B1, C, C1, D and D1

<table>
<thead>
<tr>
<th>Samples</th>
<th>Fitting</th>
<th>Kinetics variable</th>
<th>Vulcanization temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSE</td>
<td>k</td>
<td>m</td>
</tr>
<tr>
<td>A11</td>
<td>0.0017</td>
<td>0.2199</td>
<td>0.4282</td>
</tr>
<tr>
<td>A12</td>
<td>0.0017</td>
<td>0.3547</td>
<td>0.4864</td>
</tr>
<tr>
<td>A13</td>
<td>0.1033</td>
<td>0.8957</td>
<td>0.4849</td>
</tr>
<tr>
<td>A14</td>
<td>0.3288</td>
<td>0.7993</td>
<td>0.4845</td>
</tr>
<tr>
<td>A2</td>
<td>0.0022</td>
<td>0.3826</td>
<td>0.4968</td>
</tr>
<tr>
<td>A3</td>
<td>0.0016</td>
<td>0.3983</td>
<td>0.5434</td>
</tr>
<tr>
<td>A4</td>
<td>0.0022</td>
<td>0.3752</td>
<td>0.4914</td>
</tr>
<tr>
<td>B11</td>
<td>0.0030</td>
<td>0.3489</td>
<td>0.4330</td>
</tr>
<tr>
<td>B12</td>
<td>0.0030</td>
<td>0.3633</td>
<td>0.4549</td>
</tr>
<tr>
<td>B13</td>
<td>0.0030</td>
<td>0.3826</td>
<td>0.4968</td>
</tr>
<tr>
<td>B14</td>
<td>0.0030</td>
<td>0.3983</td>
<td>0.5434</td>
</tr>
<tr>
<td>A2</td>
<td>0.0022</td>
<td>0.3752</td>
<td>0.4914</td>
</tr>
<tr>
<td>A3</td>
<td>0.0022</td>
<td>0.3752</td>
<td>0.4914</td>
</tr>
<tr>
<td>C11</td>
<td>0.0030</td>
<td>0.3489</td>
<td>0.4330</td>
</tr>
<tr>
<td>C12</td>
<td>0.0030</td>
<td>0.3633</td>
<td>0.4549</td>
</tr>
<tr>
<td>C13</td>
<td>0.0030</td>
<td>0.3826</td>
<td>0.4968</td>
</tr>
<tr>
<td>C14</td>
<td>0.0030</td>
<td>0.3983</td>
<td>0.5434</td>
</tr>
<tr>
<td>C2</td>
<td>0.0030</td>
<td>0.3826</td>
<td>0.4968</td>
</tr>
<tr>
<td>C3</td>
<td>0.0030</td>
<td>0.3826</td>
<td>0.4968</td>
</tr>
<tr>
<td>C4</td>
<td>0.0030</td>
<td>0.3826</td>
<td>0.4968</td>
</tr>
<tr>
<td>D11</td>
<td>0.0062</td>
<td>0.2897</td>
<td>0.4513</td>
</tr>
<tr>
<td>D12</td>
<td>0.0237</td>
<td>0.5589</td>
<td>0.4057</td>
</tr>
<tr>
<td>D13</td>
<td>0.0717</td>
<td>0.8457</td>
<td>0.2933</td>
</tr>
<tr>
<td>D14</td>
<td>2.5390</td>
<td>1.6975</td>
<td>0.2728</td>
</tr>
<tr>
<td>D2</td>
<td>0.0262</td>
<td>0.5523</td>
<td>0.4038</td>
</tr>
<tr>
<td>D3</td>
<td>0.0218</td>
<td>0.4694</td>
<td>0.3927</td>
</tr>
<tr>
<td>D4</td>
<td>0.0316</td>
<td>0.6935</td>
<td>0.5106</td>
</tr>
</tbody>
</table>

Remark: C11 and B11 were milled at temperature of 55 °C; C12 60 °C, C13 65 °C, and C14 70°C; A11 and D11 were vulcanized at temperature of 140 °C; A12 and D12 150 °C; A13 and D13 160 °C; and A14 and D14 170 °C.

Table 4. Reaction rate constant as a function of vulcanization temperature in sample A1 and D1

<table>
<thead>
<tr>
<th>Samples</th>
<th>In k, min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>19.913 exp (-8825.3/T)</td>
</tr>
<tr>
<td>D1</td>
<td>24.081 exp (-10456/T)</td>
</tr>
</tbody>
</table>

Figure 9. Relation between dα/dt and α in sample of A11 at vulcanization temperature of 140 °C.

Figure 10. Arrhenius relation between k and T in sample of A1 and D1.

Table 4. Reaction rate constant as a function of vulcanization temperature in sample A1 and D1.

- Samples of A12, A2, A3, and A4 had the same reaction rate as the reaction rate described in Fig. 1.
- From Fig. 1 and Table 3, the higher the k is, the higher the torque will be. The same k information of A12, A2, A3, and A4 were stated by a sample of D12, D2, D3 and D4 on Table 3 and Fig. 7.
- Samples of B12, B3, and B4 had the same information of reaction rate as samples of C12, C2, C3, and C4. The more carbon black added at the beginning of RMP was, the lower the reaction rate constant would be. It determines that carbon black cannot function as a catalyst and its surface has been tainted by rubber chemicals.
Mixing temperature influenced the reaction rate of vulcanization. Samples of B11, B12, B13, and B14 had the same tendency of reaction rate samples of C11, C12, B13 and C14 as described in Table 3 and Fig. 4 and 6. From these Table and Figures, high mixing temperature resulted in a low reaction rate of vulcanization. High mixing temperature causes the low shearing force of rubber. It makes a large particle of carbon black and rubber chemicals easy to disperse into the rubber. On the other hand, low mixing temperature results in a high shearing force of rubber and make carbon black and rubber chemicals dispersed into the rubber in the relatively small particle. From the explanation, explanation rate based on high shearing force is better than that of a low one.

CONCLUSION

RMP influenced the values of torque. The value of torque increased with the increase of the carbon black mixed at the beginning of RMP. The mixing sequence of rubber chemicals and carbon black into the rubber, mixing temperature and vulcanization temperature affected the values of torque too. The increase of mixing temperature caused the decrease of torque. High vulcanization temperature resulted in low torque and depended on the nature of natural rubber. Type carbon black also influenced torque, the difference of type one caused the difference of particle size. The small particle size of carbon black resulted in high torque. Reaction rate constants of natural rubber vulcanization based on autocatalysis model were rather significant to explain the vulcanization rate of natural rubber vulcanization.

ACKNOWLEDGEMENT

I would like to express my gratitude to Directorate General of the Higher Education Republic of Indonesia (in the scheme of Doctor Dissertation Grant 2010 contract number LPPM-UGM/1970/2010), Polymer Technology Laboratory of Chemical Engineering Department Faculty of Engineering Gadjah Mada University, and Bogor Research Station for Rubber Technology.

REFERENCES

[34] Vega, B., Kraushaar, C., Agulló, N., and Borrós, S., 2008, Reaction stage modeling (RSM) study: Diphenyl disulfide (DPDS) effect in monosulfidic and disulfidic crosslinks under microwave heating, KGK Elastomere und Kunststoffe, 61 (7-8), 390–393.
[36] Sangwichien, C., Sumanatrakool, P., and Patarapaiboolchai, O., 2008, Effect of filler loading on curing characteristics and mechanical properties

