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ABSTRACT

The effect of macrocycle ring size on the corrosion inhibition efficiency of dibenzo-12-crown-4 (DB12C4),
dibenzo-15-crown-5 (DB15C5), dibenzo-18-crown-6 (DB18C6), dibenzo-21-crown-7 (DB21C7) and dibenzo-24-
crown-8 (DB24C8) have been elucidated by mean of density functional calculation at B3LYP/6-31G(d) level of theory
in the gas and aqueous environment. The quantum chemical parameters including the frontier orbital energies
(EHOMO, ELUMO), ionization potential (I), electron affinity (A), the absolute electronegativity (χ), hardness (η), softness 
(σ), and the fraction of electron transferred (ΔN) are positively correlated to the corrosion inhibition efficiency (IE%) 
of the studied crown ethers. The calculation results indicate that DB24C8 exhibits the highest corrosion inhibition
efficiency, whereas DB12C4 exhibits the lowest corrosion inhibition efficiency. The results of this study will contribute
to design crown ethers potential as corrosion inhibitors.

Keywords: crown ether; corrosion inhibition; ring size; DFT method

ABSTRAK

Pengaruh ukuran cincin makrosiklik terhadap efisiensi inhibitor korosi senyawa dibenzo-12-mahkota-4
(DB12C4), dibenzo-15-mahkota-5 (DB15C5), dibenzo-18-mahkota-6 (DB18C6), dibenzo-21-mahkota-7 (DB21C7)
and dibenzo-24-mahkota-8 (DB24C8) pada fasa gas dan larutan telah dihitung menggunakan teori fungsional
kerapatan pada tingkatan teori B3LYP/6-31G(d). Parameter kimia kuantum seperti orbital energi (EHOMO, ELUMO),
potensial ionisasi (I), afinitas elektron (A), elektronegativitas mutlak (χ), sifat keras (η), sifat lunak (σ) dan jumlah 
transfer elektron (ΔN) berkorelasi positif dengan efisiensi inhibitor korosi (IE%) dari senyawa dibenzo eter mahkota. 
Hasil perhitungan menunjukkan bahwa DB24C8 memiliki efisiensi inhibitor korosi tertinggi sedangkan DB12C4
memiliki efisiensi inhibitor korosi terendah. Hasil kajian ini akan berkontribusi besar pada proses desain senyawa
eter mahkota yang potensial sebagai inhibitor korosi.

Kata Kunci: eter mahkota; inhibitor korosi; ukuran cincin; Metode DFT

INTRODUCTION

Corrosion is an inevitable electrochemical process
for less noble metals and alloys. It gradually destroys
metallic structures when metals interact with a corrosive
environment such as hydrochloric acid [1]. Having no
prevention, corrosion processes may lead to massive
economic losses. Therefore, intensive efforts to gain
high-efficiency and the feasible use of the corrosion
inhibitors still a very active research area. Moreover,
searching for less toxic and environment-friendly
corrosion inhibitors becomes significantly important due

to the increased awareness of the importance of the
green chemistry applications. A variety of organic
compounds has been used as green corrosion inhibitor
[2-8]. Most the efficient organic inhibitors contain
electronegative functional groups in which incorporate
heteroatoms such as oxygen, nitrogen, sulfur,
phosphorus (O, N, S, and P) and π-electron in multiple 
bonds [9-11]. These types of functional groups facilitate
the formation of complexes between organic inhibitors
and metal surfaces via a coordinate covalent bond
(chemical adsorption) or an electrostatic interaction
(physical adsorption) [12]. The complex formation



Indones. J. Chem., 2017, 17 (3), 431 - 438

Saprizal Hadisaputra et al.

432

between organic inhibitors and metal surfaces creates a
uniform film on the metal surface, which prevents
contact with the corrosive medium [13].

A major research effort on the metallic corrosion
inhibition properties of many organic inhibitors has been
devoted. However, very few experimental studies have
been attempted to study the role of crown ethers as an
organic corrosion inhibitor. Crown ethers have received
increasing interest since they were first characterized by 
Pedersen [14-15]. Their ability to selectively bind metal
ions has led to a wide range of applications such as
sensing [13], phase-transfer catalysis [16], extraction
[17] and corrosion inhibitor as currently reported [18-19].
The properties of crown ethers can easily be tuned by
modifying their heteroatom (O, N, S, and P), and adding
the π-electron in multiple bonds such as benzene groups 
to meet the criteria of corrosion inhibitor. Furthermore,
crown ethers are less toxic and environment-friendly
which are suitable for green corrosion inhibitors. Fouda
et al. [19] reported that crown ethers are highly potential
candidate for corrosion inhibitor and they show good
corrosion inhibitor efficiencies.

The quantum chemical investigation has been used
extensively to study the interaction of crown ether with
some metal ions. These studies have been performed
on the effect of macrocyclic ring size, donor atoms,
electron donating and withdrawing substitution on the
metal ion-crown ether interaction [20-23]. The quantum
chemical approach also has been used to investigate the
corrosion inhibitor of many organic inhibitors [24-28]. In
this current work, we use the quantum chemical
investigation to study the effect of macrocyclic ring size
on the corrosion inhibition efficiency of dibenzo-crown
ethers.

COMPUTATIONAL METHOD

The geometries of crown ether were determined
using Density functional theory (DFT) in the hybrid
B3LYP [29-31]. All calculations including the quantum
chemical parameters were performed using the
Gaussian 03 package [32]. In order to reach the ground
state geometry, no symmetry constraint was applied
during geometry optimization. The quantum chemical
parameters such as the energy of the highest occupied
molecular orbital (EHOMO), the energy of the lowest
unoccupied molecular orbital (ELUMO), the ionization
potential (I), the electron affinity (A), the absolute
electronegativity (χ), hardness (η), softness (σ), the 
fraction of electron transferred (ΔN), and the corrosion 
inhibitors (IE%) efficiencies were calculated.

According to Koopman’s theorem [33], ionization
potential (I) and electron affinity (A), the electronegativity
(χ) and global hardness (η) may be defined in terms of 
the energy of the HOMO and the LUMO. Ionization

potential (I) is defined as the amount of energy required
to remove an electron from a molecule [34]. It is related
to the energy of the EHOMO through the eq. 1:

HOMOI E  (1)

Electron affinity (A) is defined as the energy
released when a proton is added to a system [34]. It is
related to ELUMO through the eq. 2:

LUMOA E  (2)

The electronegativity is the measure of the power
of an atom or group of atoms to attract electrons
towards itself [35], it can be estimated by using the eq.
3:

I A

2


  (3)

Chemical hardness (η) measures the resistance 
of an atom to a charge transfer [35], it is estimated by
using the eq. 4:

I A

2


  (4)

According to Pearson theory [36] the fraction of
transferred electrons (ΔN) from the inhibitor molecule 
to the metallic atom can be calculated (eq. 5):

  2

Fe lnh
N

2 Fe inh r

  
 

   
(5)

where χFe and χinh denote the absolute 
electronegativity of iron and inhibitor molecule
respectively ηFe and ηin denote the absolute hardness 
of iron and the inhibitor molecule, respectively. In order
to calculate the fraction of electrons transferred, the
theoretical value for the electronegativity of bulk iron
was used χFe = 7.0 eV [37] and a global hardness of 
ηFe = 0 by assuming that for a metallic bulk I = A [38]. 

In order to investigate the correlation of the
quantum chemical parameters with the corrosion
inhibitor performance of crown ether, the inhibition
efficiencies for dibenzo crown ether models have been
determined using eq. 6-8 [39]:

CE x CE
add

CE

I I
I % 100%

I


  (6)

add add eCeIE .% I .% I .%  (7)

theor eCe addIE .% I .% IE .%  (8)

where Iadd.% is the percentage ionization potential of
the dibenzo crown ether, IEadd.% is the inhibition
efficiency % of the dibenzo crown ether, and IEtheor.% is
the theoretically calculated percentage inhibition
efficiency. The practical experimented values of the
inhibition efficiency of dibenzo-24-crown-8 and
dibenzo-18-crown-6 were 82.02 and 63.13%,
respectively [19].

The solvent effects are included using the
polarized continuum model (PCM) as implemented in
the Gaussian code due to corrosion dominantly
occurred in aqueous environment. The dielectric
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constant for the water solvent was taken as 78.4. In
employing PCM model, the single-point calculations on
gas-phase geometries are sufficient for energetic.
Structure re-optimization in the presence of the solvent
was found to have a minor influence on energetic [20-
21,23].

RESULT AND DISCUSSION

Five dibenzo crown ether derivatives with different
ring sizes were investigated as depicted in Scheme 1.
Fig. 1 shows the structure of the optimized geometries of
(DB12C4), dibenzo-15-crown-5 (DB15C5), dibenzo-18-
crown-6 (DB18C6), dibenzo-21-crown-7 (DB21C7) and
dibenzo-24-crown-8 (DB24C8) calculated with DFT
B3LYP/6-31G(d) level of theory. The presence of
benzene ring making the molecule rigid and it leads to a
small number of conformational isomers as a result, the

computational effort was also reduced. The structure
optimization was conducted by Cs conformation.

Scheme 1. Molecular structures of the studied
molecules

Fig 1. The optimized structures and HOMO-LUMO orbitals of the studied free molecules determined using DFT
method at the B3LYP/6-31G(d) level of theory
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Table 1. Quantum-chemical parameters for five models of dibenzo crown ether determined using DFT method at the
B3LYP/6-31G(d) level of theory at gas (G) and solvent (W) phase

Compounds
EHOMO

(eV)
ELUMO

(eV)
Egab

(eV)
I (eV) A (eV) χ (eV) η (eV) σ (eV) ∆N IEtheor.%

DB24C8 G -5.3789 0.1972 5.5762 5.3789 -0.1973 2.5908 2.7881 0.3587 0.7907 82.0200
W -5.6117 0.0144 5.6262 5.6117 -0.0144 2.7987 2.8131 0.3555 0.7467 78.4692

DB21C7 G -5.4594 0.2318 5.6913 5.4594 -0.2318 2.6138 2.8456 0.3514 0.7706 80.7918
W -5.6007 0.0212 5.6219 5.6007 -0.0212 2.7897 2.8109 0.3558 0.7489 78.6383

DB18C6 G -5.5805 0.2242 5.8047 5.5805 -0.2242 2.6781 2.9024 0.3445 0.7445 63.1300
W -5.8793 -0.0299 5.8494 5.8793 0.0299 2.9546 2.9247 0.3419 0.6915 59.7500

DB15C5 G -5.7064 0.1151 5.8215 5.7064 -0.1151 2.7957 2.9108 0.3436 0.7222 61.7054
W -5.843 0.0307 5.8738 5.843 -0.0308 2.9061 2.9369 0.3405 0.6969 58.7355

DB12C4 G -5.6526 0.1994 5.852 5.6526 -0.1995 2.7265 2.926 0.3418 0.7302 60.8904
W -5.7862 0.0775 5.8637 5.7862 -0.0776 2.8543 2.9319 0.3411 0.7070 58.5639

Fig 2. Correlation between EHOMO and the number of electrons transferred (∆N) with corrosion inhibition efficiency 
(IE%) of five models of dibenzo crown ether in gas and solvent phase

The frontier molecular orbitals related to the
reactivity of the dibenzo-crown ethers are reported in
Table 1. The interaction between EHOMO and ELUMO of
reacting species lead to the transition of electrons within
molecules [40]. The transition of electron includes
donation and acceptation of electron is measured by the
energy value of molecular orbitals. The HOMO energy
indicates the tendency of molecule towards the donation
of electrons. It is found that dibenzo crown ethers with
larger macrocycle ring size have higher HOMO energies
than those with smaller macrocycle ring size. Therefore,

they are more intent to donating electrons than smaller
macrocycle ring sizes are. It can be seen that the
EHOMO for the dibenzo crown ether models follow the
order of DB24C8 > DB21C7 > DB18C6 > DB15C5 >
DB12C4. This trend can be used as a preliminary
prediction that DB24C8 will have the highest corrosion
inhibitor efficiency.

Fig. 1 shows the frontier molecular orbital
visualization of DB12C4, DB15C5, DB18C6, DB21C7
and DB24C8 calculated by B3LYP/6-31G(d) level of
theory. It indicates that the HOMO of these crown ether
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Fig 3. Interaction of molecular orbital DB24C8 with Fe2 cluster

compounds matches with the aromatic π system of the 
benzene rings in which the electron density accumulates
on the π-electron multiple bonds of benzene. Apparently, 
it is expected that the enhancement of the π-electron 
due to macrocycle ring size in benzene contributes for
interacting with metal surfaces. The phenyl rings of
dibenzo crown ether have higher binding contribution to
metal surfaces via delocalization of π-electron. 

The number of electrons transferred (ΔN) was also 
presented in Table 1. The inhibition efficiency increases
by increasing of macrocycle ring size of these inhibitors
to donate electrons to the metal surface. The results
indicate that ΔN values strongly correlate with the 

experimental and predicted inhibition efficiencies. Thus,
the highest fraction of electrons transferred is
associated with the best inhibitor DB24C8, whereas the
least fraction is associated with the inhibitor that has
the least inhibition efficiency. The correlation between
the electrons transferred and inhibition efficiencies in
gas and aqueous phase is depicted in Fig. 2. A linear
correlation has been identified between electrons
transferred and inhibition efficiencies in gas r2 = 0.9148
and aqueous phase r2 = 0.9436. A linear correlation
also has been identified between HOMO energies and
inhibition efficiencies in gas and aqueous phase, r2 =
0.9152 and r2 = 0.9148, respectively.
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In order to investigate the correlation of the
quantum chemical parameters with the corrosion
inhibitor performance of crown ether, the calculated
inhibition efficiencies for dibenzo crown ether models
have been determined using the previously reported
formula by Obayes et al. [40]. The calculated and
practical experimented inhibition efficiency values are
depicted in Table 1. The corrosion inhibition efficiency
data shows that the presence of larger macrocycle ring
size on the framework of dibenzo crown ether increases
inhibition efficiency by approximately 18.89%, from
DB18C6 to DB24C8. In contrast, the smaller macrocycle
ring size reduces the inhibition efficiency by 3.1%, from
DB18C6 to DB12C4. Therefore, the lowest inhibition
efficiency is DB12C4 and the highest inhibition efficiency
is DB24C8.

In order to understand the molecular level
adsorption of corrosion inhibitor over the metal surface,
the molecular interaction of DB24C8 with Fe2 cluster was
studied. The geometry optimization of Fe2-DB24C8 was
performed in the ground electronic state. The ground
electronic state is the state in which the inhibitor most
likely exists during the bond formation between the
inhibitor and the metal surface [44]. Interaction of
molecular orbital DB24C8 with Fe2 cluster was depicted
in Fig. 3. It showed that the delocalization from aromatic
benzene ring assists to a greater extent in giving up its π 
electron density through its HOMO orbital to metal
LUMO orbital. This π electron density transfer leads to 
DB24C8 adsorption over the Fe2 cluster. It indicated that
the HOMO-LUMO orbitals involve in adsorption reaction
with the Fe2 cluster. Moreover, it is found that the
HOMO-1 orbital of DB24C8 also has the capacity to
transfer the electron clouds toward the Fe2 cluster. This
adsorption mechanism is consistent with previous
studies [44-47] that the HOMO orbitals of the aromatic
system strongly interact with the metallic orbitals through
the chemisorption reaction [48].

CONCLUSION

Quantum chemical parameters including the
energy of the highest occupied molecular orbital (EHOMO)
and the lowest unoccupied molecular orbital (ELUMO),
ionization potential (I), electron affinity (A), the absolute
electronegativity (χ), hardness (η), softness (σ), the 
fraction of electron transferred (ΔN), and the inhibitors 
efficiencies dibenzo crown ether have been studied by
B3LYP/6-31G(d) level of theory. To the system under
consideration, the calculation results indicated that the
highest occupied molecular orbital EHOMO and the
fraction of electron transferred (ΔN) have a good 
correlation with the corrosion inhibition efficiency (IE%).
Larger macrocycle ring size increases the inhibition
efficiency, in contrast, smaller macrocycle ring size has

the opposite effect. It is found that DB24C8 exhibits the
highest inhibition efficiency, whereas DB12C4 exhibits
the lowest highest inhibition efficiency.
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