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 Abstract: Malaria is a disease that commonly infects humans in many tropical areas. 
This disease becomes a serious problem because of the high resistance of Plasmodium 
parasite against the well-established antimalarial agents, such as Artemisinin. Hence, 
new potent compounds are urgently needed to resolve this resistance problem. In the 
present study, we investigated cycloguanil analogues as a potent antimalarial agent by 
utilizing several studies, i.e., comparative of molecular field analysis (CoMFA), molecular 
docking and molecular dynamics (MD) simulation. A CoMFA model with five partial 
least square regressions (PLSR) was developed to predict the pIC50 value of the compound 
by utilizing a data set of 42 cycloguanil analogues. From statistical analysis, we obtained 
the r2 values of the training and test sets that were 0.85 and 0.70, respectively, while q2 
of the leave-one-out cross-validation was 0.77. The contour maps of the CoMFA model 
were also interpreted to analyze the structural requirement regarding electrostatic and 
steric factors. The most active compound (c33) and least active compound (c8) were 
picked for molecular docking and MD analysis. From the docking analysis, we found 
that the attached substituent on the backbone structure of cycloguanil gives a significant 
contribution to antimalarial activity. The results of the MD simulation confirm the 
stability of the binding pose obtained from the docking simulations. 
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■ INTRODUCTION 

Malaria is a life-threatening disease that causes 
public health problems in many regions of Africa and 
Asia. In 2016, malaria had infected 216 million people 
across the world and had caused 445,000 deaths, as reported 
by the World Health Organization [1]. Furthermore, this 
disease leads to the increase of economic and social 
burden on infected patients [2]. This disease is mostly 
caused by the Plasmodium falciparum parasite which is a 
major factor of malaria-related deaths in the world. 
Several antimalarial drugs, such as chloroquine, 
pyrimethamine, and cycloguanil, have been used to treat 
the infection of malaria. These drugs act as antimalarial 
agents by inhibiting the activity of dihydrofolate reductase 
of  P.  falciparum  enzyme,  i.e.,  dihydrofolate  reductase- 

thymidylate synthase (PfDHFR-TS) [3]. 
However, the resistance of the parasite against 

well-established antimalarial agents has been found in 
many countries. The widespread occurrences of malaria 
could be the main factor of this resistance [4]. Therefore, 
new antimalarial drugs are urgently required to 
overcome the resistance problem. Regarding this issue, a 
series of cycloguanil analogues which are known to have 
an ability to effectively bind to wild type and mutant type 
PfDHFR, an antimalarial drug target, have been employed 
in this study [5-6]. The cycloguanil analogues backbone 
contains 1,3,5-dihydrotriazine in which p-chlorophenyl 
is attached at N1 position, as shown in Fig. 1. 

In silico approach is commonly used to design the 
new drug candidate by investigating the type of attached  
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Fig 1. Chemical structure of cycloguanil analogues 

substituent in cycloguanil analogues. Several studies have 
been reported concerning the utilization of in silico 
approaches, such as quantitative structure-activity 
relationship (QSAR) [7-8], pharmacophore [9], homology 
modelling [10], molecular docking [9], and molecular 
dynamics [11], in designing new drug candidates. 
Relating to in silico studies on cycloguanil analogues as an 
antimalarial agent, Kuhmar Ojha and co-workers have 
performed QSAR, pharmacophore mapping and docking 
studies to obtain cycloguanil derivatives with high binding 
affinity against PfDHFR-TS target [12]. A prediction 
model of cycloguanil analogues has also been developed 
by Nattee and co-workers. They used an extremely 
randomized tree to develop the model and obtained a 
satisfying result [13]. In addition, Inthajak and co-
workers developed a QSAR model to predict the activity 
of cycloguanil analogues by using PSO-SVR method [14]. 
However, to the best of our knowledge, there is no report 
on the investigation of the dynamics of cycloguanil 
analogues and the DHFR receptor. 

In this study, we utilized a series of in silico approach, 
i.e., comparative of molecular field analysis (CoMFA), 
molecular docking, and molecular dynamics, to explore 
the structural contribution of cycloguanil analogues on 
antimalarial activity. The observed pIC50 values were 
considered as target values in developing the CoMFA 
model. The contribution of a steric and electrostatic factor 
was revealed by carrying out contour maps analysis. We 
also investigated the binding pose of the complex of 
cycloguanil analogues and the receptor target by using 
molecular docking. Finally, the binding pose was 
confirmed by carrying out molecular dynamic simulation. 

■ COMPUTATIONAL METHODS 

Molecular Data Set 

A  series  of  42  cycloguanil  analogues,  used  in  this  

study, were obtained from references [6,15]. The 
experimental IC50 values of the compounds at nano-molar 
(nM) units were converted to molar (M) units. To obtain 
target values in a smaller range, we converted the IC50 to 
pIC50 by using the formula pIC50 = -log IC50. Then, pIC50 
values were used as target values for the development of 
the CoMFA model. From the data set, training and test 
sets which contain 32 and 10 compounds, respectively, 
were randomly selected. The chemical structure and 
experimental pIC50 values of cycloguanil analogues are 
provided in Table 1. The 2D structures of the 
compounds were constructed by using the 
MarvinSketch program [16] and were converted to a 3D 
structure by using Open Babel package [17]. The 
structures were optimized by using AM1 method in 
MOPAC package [18] and were converted to SDF file 
format containing all compound structures. This SDF 
file was used for performing molecular alignment of 
CoMFA analysis. 

CoMFA Modelling 

The CoMFA model was developed by utilizing the 
optimized compound structure with pIC50 as the target 
values. The development of the CoMFA model was 
begun by performing molecular alignment analysis by 
using Open3DALIGN package [19]. In this stage, 
molecular alignment processes were performed by using 
each compound as a template, so 42 alignments were 
generated. The alignment with compound 42 (c42) as a 
template, as shown in Fig. 2, has the maximum 
alignment score and thus was considered for developing 
the CoMFA model. 

CoMFA model was built in Open3DQSAR 
package [20] by inserting the alignment with c42 as a 
template into a grid box with 1 Å grid spacing and was 
expanded to 5 Å in all directions from the alignment as 
the center. Molecular interaction fields (MIF) were 
generated in terms of the steric field and electrostatic 
field. For the steric field, MIF was calculated by using a 
carbon atom probe, while for the electrostatic field, MIF 
was calculated by using a volume-less probe with +1 
charge. Before building the model, pre-treatment 
processes were performed to obtain an acceptable 
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model. The pre-treatment processes consisted of the 
following steps: (a) determination of the cut-off of 
maximum and minimum energy values at ± 30 kcal/mol, 
(b) interaction fields with the values of absolute energy 
lower than 0.05 were adjusted to zero, (c) independent 
variables with the value of standard deviation lower than 
0.1 were removed, (d) independent variables matrices 
were scaled with the block unscaled weighting (BUW) 
technique [20-21]. 

To increase the interpretability, a variable selection 
procedure was carried out to discard fewer influent 
variables. This procedure was performed by using the 
combination of smart region definition (SRD) and 
factorial design (FFD) [20,22]. Ten cycloguanil analogues  
 

data were randomly selected for a test set, while the rest 
of the data was set as a training set. Finally, a prediction 
model was built with partial least square regression 
(PLSR)  by  utilizing  the  pIC50  values  as  the  dependent  

 
Fig 2. The best alignment with c42 as a template 

Table 1. Data set of cycloguanil analogues used in this study 
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Comp. R1 R2 X Y pIC50  Comp. R1 R2 X Y pIC50 

1 CH3 CH3 Cl H 5.61  22 CH3 CH3 H H 6.35 
2 H H Cl H 6.50  23a CH3 CH3 F H 6.00 
3 CH3 H Cl H 6.46  24 H H H H 6.45 
4a CH2CH3 H Cl H 6.31  25 H H F H 6.51 
5 (CH2)2CH3 H Cl H 6.64  26 CH3 CH3 H Cl 6.53 
6 (CH2)3CH3 H Cl H 6.60  27 CH3 CH3 Cl Cl 6.51 
7a CH(CH3)2 H Cl H 5.55  28a CH3 H H Cl 7.55 
8 C(CH3)3 H Cl H 4.18  29 CH3 H Cl Cl 7.72 
9 C6H5 CH3 Cl H 7.36  30a C6H5 H H Cl 7.62 

10 CH3 CH3 Br H 5.56  31 C6H5 H Cl Cl 7.54 
11 CH3 H Br H 6.56  32 C6H4-p-OC6H5 H Cl H 7.40 
12a CH2CH3 H Br H 6.66  33 C6H4-p-OC6H5 H H Cl 8.40 
13 (CH2)2CH3 H Br H 6.60  34a C6H4-m-OC6H5 H H Cl 7.22 
14 CH(CH3)2 H Br H 6.14  35 C6H4-m-OCH2C6H5 H H Cl 6.72 
15a C6H5 H Br H 6.74  36 C6H4-m-(OC6H4-4-Cl) H Cl H 6.38 
16 CH3 CH3 CH3 H 5.44  37 C6H4-m-(4-ClC6H4) H H Cl 6.41 
17 CH3 H CH3 H 6.33  38 n-C7H15 H H Cl 8.40 
18a CH2CH3 H CH3 H 6.29  39a C6H4-p-OC3H7 H H Cl 8.40 
19 (CH2)2CH3 H CH3 H 6.82  40 C6H4-m-(OC6H3-3,5-Cl2) H H Cl 7.30 
20 CH(CH3)2 H CH3 H 5.46  41 C6H4-m-O(CH2)2-O(2,4,5-Cl3-C6H2) H H Cl 6.43 
21 C6H5 H CH3 H 7.41  42 C6H4-m-(3-CF3-OC6H4) H H Cl 6.74 

a refers test set compound 
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variables and selected CoMFA variables as independent 
variables. 

Model Validation 

To validate the CoMFA model, we performed both 
internal and external validation tests and compared the 
value with the threshold. The internal validation was 
performed by calculating the coefficient of determination

2
train(R ) and leave-one-out (LOO) cross-validation 2

loo(Q )
using the training set. Meanwhile, the external validation 
was conducted by calculating the coefficient of 

determination 2
test(R ) using the test set. The model was 

acceptable if the value of R2 and Q2 were more than 0.6 
and 0.5, respectively. Furthermore, several validation 
parameters were calculated to confirm the acceptability of 
the model. The calculation of the validation parameters is 
summarized as follows 

2
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where y and y� represent the experimental and predicted 
value of pIC50, respectively, while y� and y�� represent the 
average of the experimental and predicted value, 

respectively. The value of c 2
pR  represents the 

correlation coefficient which is calculated by considering 
randomized and non-randomized models. This 
parameter can be used to verify that the model is not 
overfitting. The acceptability of the model was 
considered according to the following criteria [23-25] 

2R 0.6>  
2Q 0.5>  

0.85  k 1.15≤ ≤  or 0.85  k ' 1.15≤ ≤  

( )2 2
0

2

r r
0.1

r

−
<  or 

( )2 '2
0

2

r r
0.1

r

−
<  

2 '2
0 0r r 0.3− <  

2
mr 0.5>  

2
mr 0.2∆ <  

c 2
pR 0.5>  

Applicability domain (AD) of the model was also 
determined to confirm that the data set lies in the 
domain of the model. The determination of AD was 
performed by using leverage method that is formulated as 

T 1 TH X(X X) X−=  (14) 
where X represents the score matrix obtained from the 
PLSR procedure. The critical leverage (h*) value was 
defined as 3p/n, where p and n are the numbers of 
attributes and data set, respectively, that are involved in 
the training process. The predicted value of a data set was 
acceptable if the calculated leverage value was smaller 
than the critical leverage. The AD of the CoMFA model 
was figured out by using the William plot [26]. Finally, 
we interpreted the CoMFA contour map of the steric and 
electrostatic factors by using MacPymol package [27]. 

Molecular Docking 

According to the pIC50 values, the most active (c33) 
and least active compound (c8) were selected for further 
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analysis of molecular docking and molecular dynamics 
simulation. Regarding the docking scenario, we 
implemented a flexible ligand-rigid receptor scheme to 
represent lock and key theory of ligand-receptor 
interaction. The receptor molecule was prepared by 
downloading the X-ray crystal structure of wild-type 
Plasmodium falciparum DHFR-TS complexed with 
cycloguanil and NADPH at 2.6 Å resolution (PDB ID: 
3UM8, https://www.rcsb.org/structure/3um8) from 
RCSB protein data bank [28]. The binding site of the 
receptor was identified from the position of native 
cycloguanil found in the X-ray structure. However, we 
removed the original cycloguanil from the structure as 
part of the preparation process. 

To construct pdbqt file of the receptor, we used 
Open Babel package [17] to add polar hydrogens and 
assign Gagstier charge to the ligand. The grid box, which 
defines the docking area, was constructed by using the 
native ligand position as the center and expanded the box 
with a size of 8 Å. The docking simulation was performed 
by using Smina docking package [29] and the binding 
pose obtained from the docking simulation was plotted by 
using LigPlot package [30]. 

The docking procedure was validated by extracting 
native cycloguanil ligand from wild-type Plasmodium 
falciparum DHFR-TS complex and re-docking the ligand 
to the receptor. The validity of the method was 
determined by aligning the ligand obtained from docking 
simulation and original X-ray crystal structure, and 
calculating the deviation between both structures. In this 
case, the deviation was represented as the root mean 
square displacement (RMSD) parameter. 

Molecular Dynamics 

The binding poses of the docked ligand into the 
receptor were obtained instantaneously from docking 
simulation. Consequently, the interaction may be 
unstable due to the rigid receptor approximation. 
Therefore, we confirmed the stability and validity of the 
interaction by carrying out molecular dynamics 
simulation for the complex system. The molecular 
dynamics simulation of ligand-protein complexes was 
performed by using Gromacs 2018 package [31]. 

The preparation of the structure of the complex 
was carried out by using MacPymol package [27]. The 
topology of protein was prepared by using CHARMM36 
force field. Meanwhile, the topology of ligand was 
estimated by using CHARMM General Force Field 
(CGenFF) server (https://cgenff.umaryland.edu/). Then, 
the complex was solvated into dodecahedron box of SPC 
water with 1.00 nm from the molecule to the edge of the 
box. The solvated complex system was neutralized by 
replacing the solvent molecule with Cl– ions. 

After completing the preparation step, the system 
was minimized by using the steepest descent algorithm, 
followed by consecutive NVT (1 ns) and NPT (1 ns) 
equilibrations. During the equilibrations, the 
temperature was fixed at 300 K by utilizing V-rescale 
thermostat algorithm [32], and the pressure was fixed at 
1.0 bar by utilizing Berendsen barostat algorithm [33]. 
Finally, MD simulation was performed for 20 ns with a 
time step of 2 fs. Neighbor searching was carried out by 
using Verlet algorithm with a cut-off radius of Van der 
Waals (VdW) short interaction that was set at 1.2 nm. 
Long-range electrostatic interaction was carried out by 
using Particle Mesh Ewald scheme-38 with a cut-off 
radius set at 1.2 nm. The results of the simulation were 
investigated by using Gromacs analysis tools [31]. 

■ RESULTS AND DISCUSSION 

CoMFA Modelling 

To develop the CoMFA model, we used the best 
alignment of molecules by considering the c42 molecule 
as a template. The model was developed by using the 
partial least square regressions (PLSR) method with five 
PLS components. The comparison of predicted and 
experimental values of pIC50 is shown in Fig. 3(a), while 
the Williams plot that represents the applicability 
domain (AD) of the model is shown in Fig. 3(b). Those 
analyses confirm that all of the data lie inside the AD 
region, indicating that no outlier data existed in the data 
set. Furthermore, the predictive model is confirmed to 
be acceptable for all compounds. To validate the CoMFA 
model, several statistical parameters were calculated and 
compared to threshold values [23-25]. We found that the 
calculated values of the validation parameters, as provided 
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Fig 3. (a) Scatter plot of predicted pIC50 vs. experimental pIC50; (b) Williams plot of applicability domain 

 
in Table 2, met the criteria. These results indicate that the 
CoMFA model was valid and acceptable. In addition, we 

found that the value of c 2
pR  is larger than 0.5, which 

indicates that the model is not overfitting. 
The contour maps of the CoMFA model that 

represent the steric and electrostatic field of favorable 
substituents are presented in Fig. 4. In the steric field, the 
green and yellow contours depict the favorable and 
unfavorable position, respectively, for bulky group 
substituents. Meanwhile, in the electrostatic field, the red 
and blue contours depict the favorable position for 
negatively and positively charged substituents, 
respectively. In the steric contour map, we found a large 
green contour around R1 position. This indicates that bulky 

Table 2. Calculated statistical parameter of CoMFA 
model 

Parameter Training set Test set Threshold [23-25] 
2R  0.85 0.70 > 0.6 
2Q  0.77 - > 0.5 

k′  0.86 1.05 0.85 ≤ k´ ≤ 1.15 

( )2 2
0

2

r r

r

−
 0.07 0.00 < 0.1 

2 '2
0 0r r−  0.05 0.09 < 0.3 

2
mr  0.72 0.57 > 0.5 

2
mr∆  0.14 0.18 < 0.2 

c 2
pR  0.76 - > 0.5 

 
Fig 4. (a) Steric CoMFA contour map, green and yellow contour indicate a region where bulky substituent is favorable 
and unfavorable, respectively; (b) Electrostatic CoMFA contour map, red and blue contour indicate a favorable region 
for a substituent with positively and negatively charged, respectively 
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group substituents are favorable to attach at this position. 
Among the data set, several compounds contained a bulky 
group attached at R1 position, namely c9, c15, c21, c32–
c42. The greater activity of c9 compared to c1 corresponds 
to the substitution of the methyl group of c1 by the phenyl 
group of c9. Therefore, the attachment of a phenyl group 
at R1 position increased the steric effect and thus increased 
the activity of the compounds. 

Besides that, the green contour was also found 
around the X position that indicates a favorable position 
for the more steric group at this position. The greater 
activity of c12 compared to c4 was also related to the 
increase of the steric effect of the substituent at this 
position, namely Br– and Cl– for c12 and c4, respectively. 
Meanwhile, the yellow contours were found around the 
R2 position that indicates the unfavorable position for a 
bulky group in this position. We found that most of the 
compounds in the data set had a low steric substituent. 
The attachment of more steric substituents at this position 
decreased the activity of the compound. This finding was 
confirmed by the comparison of the pIC50 of c1 (5.61) 
with a methyl substituent that was greater than c3 (6.46) 
with a hydrogen substituent. In addition, yellow contours 
were found around the Y position that indicates the 
unfavorable position for a bulky group in this position. 

In the electrostatic contours, we found two 
dominant contours that consists of one blue contour 
around the R1 position and one red contour around the X 
and Y positions. This indicates that positively charged 
substituents are favorable to attach at R1 position, while 
negatively charged substituents are favorable to attach to 
both X and Y position. The activity of c4 was higher than 
that of c5 due to the existence of a more positive (ethyl 
group) substituent. Generally, the increase in the activity 
of a molecule was related to the increase in the negative 
charge of the substituent at X and Y positions. For 
example, the attachment of Cl– substituent at c26 
contributed to the higher activity of the molecule 
compared to that of c22. 

Molecular Docking 

Molecular docking analysis was carried out on the 
most active compound (c33) and the least active 

compound (c8). We found that the calculated binding 
score for c33 and c8 compound were -10.7 kcal/mol and  
-7.9 kcal/mol, respectively. The lower value of the 
binding score indicated that c33 binds to the receptor 
better than c8, which is in agreement with the 
experimental results. The binding poses of both 
compounds that were docked into 3UM8 receptor, 
obtained from the docking simulation, are provided in 
Fig. 5(a) and 5(b). From the binding poses, we found that 
both compounds were docked in a similar binding site 
of the receptor. 

The 2D plots of ligand-receptor interaction 
between c33 and c8 compounds with 3UM8 receptor are 
presented in Fig. 5(c) and 5(d). The number of hydrogen 
bonds found in the interaction of the receptor with c33 
and c8 were four and one, respectively. For c33 ligands, 
the hydrogen bonds were found in the interaction of the 
ligands with ALA16, LEU40 and SER111. Meanwhile for 
c8 ligands, a hydrogen bond was found in the interaction 
of the ligands with ALA16. From the docking results, we 
found that the higher number of hydrogen bonds found 
in c33-receptor interaction contributed to the high 
activity of the ligand. 

The acceptability of our docking simulations was 
confirmed by validating the docking procedure. The 
validity of the procedure was represented by the value of 
RMSD of the alignment between the ligand 
configuration obtained from docking simulation and the 
original X-ray crystal structure, in which the alignment is 
shown in Fig. 6. According to the validation analysis, we 
found that the RMSD value is 1.09 Å, which is low enough 
to confirm that the docking procedure is valid [34]. 

Molecular Dynamics 

To confirm the stability of the solvated complex 
system, we analyzed the fluctuation of RMSD and the 
radius of gyration for 20 ns simulation of both 
complexes, as shown in Fig. 7(a). RMSD analysis shows 
that both c33 and c8 complexes reached the equilibrium 
state after 10 ns. We also found that the RMSD value of 
the c33 complex was slightly lower than that of the c8 
complex, indicating the better stability of the c33 
complex. The fluctuation of the radius of gyration, which  
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Fig 5. The binding poses of (a) c33 and (c) c8 that are docked into 3UM8 binding site, and the plot of ligand-receptor 
interaction of (b) c33 and (d) c8 ligands 
 

 
Fig 6. The alignment of the ligand configuration obtained 
from docking simulation (green) and original X-ray 
crystal structure (yellow) 

indicates the compactness of the complex system, is 
provided in Fig. 7(b). We found that the compactness of 
the c33 complex was lower than that of the c8 complex. 

We also analyzed the fluctuation of the hydrogen 
bond formed during the simulation, as shown in Fig. 
7(c). We found that the hydrogen bond formed during 
the simulation of the c33 complex was more than that of 
the c8 complex. In the case of the c33 complex, the 
maximum number and the average number of hydrogen 
bonds were 4 and 0.78, respectively. Meanwhile, in the 
case of the c8 complex, the maximum number and the 
average number of hydrogen bonds were 3 and 0.82, 
respectively. According to the results, it seems that the 
number of hydrogen bonds formed during the 
simulation was quite similar between both complexes. 
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Fig 7. Plots of (a) RMSD, (b) radius of gyration and (c) hydrogen bonds number from MD simulation of c33 and c8 
complex 
 

 
Fig 8. The alignment of the initial (yellow) and final (red) 
structure obtained from MD simulation of 3UM8 
complex with (a) c33 and (b) c8 ligand 

Finally, we aligned the final structure of the complex 
obtained from MD simulation with the initial structure to 
verify that the structure did not change significantly during 
the simulation. The results of the alignment for both 
complexes are presented in Fig. 8. We found that the final 
structure for both complexes resembles the initial structure 
with a small deviation. This is indicated by the low RMSD 
that is evaluated from the alignment processes, which 

were 1.657 Å and 1.354 Å for the complex with c33 and 
c8, respectively. This points out that the structure did 
not change significantly during the simulation. 

■ CONCLUSION 

This study aims to explore the structural 
contribution of cycloguanil analogues on antimalarial 
activity. The CoMFA model was developed and validated 
by using several statistical parameters. Based on contour 
maps analysis, the bulky group with a positively charged 
atom was favorable to attach at the R1 position, while the 
bulky group with a negatively charged atom was 
favorable to attach at the Y position. From the docking 
analysis, we found that the existing hydrogen bonds in 
the binding pose of c33 was more than that of c8. This 
finding points out the importance of the hydrogen bond 
in supporting inhibition activity. The results of the MD 
simulation confirmed the stability of the binding pose 
obtained from the docking simulation. 
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