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Accepted: November 9, 2020 conducted. The XRD result shows the amount of NdFeB content in the NdFeB-type
permanent magnet is increased after heat treatment. The more significant amount of
NdFeB content causes higher coercivity. The maximum coercivity, 19 kOe, is achieved at
850 °C of heat treatment temperature, where the NdFeB content is at the highest amount.
Microstructural characterizations using SEM-EDS show that at 850 °C of heat treatment
temperature, the iron (Fe) content in the grain boundaries is the lowest. It causes higher
coercivity. This is due to the magnetically decoupled between NdFeB grains. The
decoupling magnet of the NdFeB grains is affected by the Fe content in the grain
boundaries. High-temperature heat treatment at 900 and 1050 °C led to the
decomposition of NdFeB content in the grains and increased the Fe content in the grain
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boundaries, which resulted in a substantial reduction of magnetic coercivity.
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= INTRODUCTION anisotropy field of its prime phase [2]. The methods used

One of the sintered magnets which can produce high to keep up high magnetic properties at the high-

energy (BH)m. is Nd-Fe-B sintered magnets. These
magnets were made by Sepehri-Amin et al. [1]. Nd-Fe-B

temperature environments in HEVs, are additional Dy
or Tb into the Nd-Fe-B sintered magnets. It will create
Dy,FeuB and Tb,Fei B compounds with a higher
anisotropy field than Nd,Fe,B [3].

Additional of Dy gives the Nd-Fe-B sintered
magnets with several transformations such as better
thermal stability but reduces the remanence and (BH)max
value [4]. Besides, these added substance components
are quite rare to be found, and their material costs rise

sintered magnets are utilized for different applications,
e.g., voice coil motors for hard disk drives and engines for
hybrid electric vehicles (HEVSs) or electric vehicles (EVs).
Ecological issues caused by carbon emission affected the
developing business sector of an electric vehicle, so that
HEVs and EVs have drawn a great deal of consideration
to be produced. Even though Nd-Fe-B sintered magnets
have high (BH)ma it has low intrinsic coercivity. This is
contributed by the Nd,Fe.sB compound, the prime phase
of this magnet, which arrives at around 12% of the

significantly. If the perfect coercivity of Nd,Fei B is
acquired, the thermal ability would be improved without
the addition of any substantial rare earth components. To
attain high coercivity, two strategies have been proposed.

Eva Afrilinda et al.



Indones. I. Chem., 2021, 21 (3), 626 - 634

One is to get uniform distribution of the Nd-rich
stage, which helps to diminish the nucleation site of
reversed magnetic domains. If there are found some
imperfections on the outer of the Nd,Fe;sB grains, the
reversed magnetic domains will show up at the low
reverse magnetic field. Once a reversed magnetic domain
appears in the grain, the domain wall moves, and
magnetic reversal occurs without any problem. When a
switched attractive space shows up in the grain, the area
divider moves, and attractive inversion happens without
any problem. In this case, it is required to diminish defects
at the outer of Nd,Fe4B grains to increase the coercivity
value. The phase that plays a vital part in diminishing
nucleation sites of the reversed magnetic domain amid the
annealing process is the Nd-rich phase. This phase
contributes to enhance the coercivity [5-6]. The other is
to control grain sizes underneath the single domain size
of 0.3 pm in sintered magnets. These approaches appear
that the control of microstructures of Nd-Fe-B magnets is
very vital to get high coercivity [5].

Recently, sintered magnets with a grain measure
around 1 pm with 20 kOe of coercivity, without the
expansion of any heavy rare-earth elements were
manufactured successfully on Nd-Fe-B type magnets by
Sasaki et al. [7].
dimension are not the only reason to increase coercivity

The methods to reduce the grain

value. Subsequently, it is observed that Dy-free magnets
with high coercivity were accomplished by reducing grain
size, as well as reducing the nucleation sites of the reversed
magnetic domain. Sepehri-Amin etal. [1] have researched
the microstructure of the grain boundary for these
magnets and the continuous grain boundary in sintered
magnets through filtering electron microscopy (SEM),
transmission electron microscopy (TEM), and atom
probe tomography techniques. Moreover, they specified
that the homogenous scattering of the Nd-rich phases at a
triple junction was required to make a continuous grain
boundary. Hence, the Nd-rich stage at the triple junction
works as an asset to create grain boundary layers during
the heat treatment process, particularly the annealing
process [3].
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It is notable that heat treatment of sintered Nd-Fe-
B magnet emphatically builds the coercivity and
improves the squareness of the demagnetizing J/H loops
[8]. The temperature and time of this heat treatment,
called annealing, the composition of the magnet should
be considered then followed by fast quenching to
optimize both the intrinsic coercivity and the hysteresis
loop squareness. Numerous researchers have portrayed
the impact of the annealing treatment and demonstrated
a few patterns to associate the coercivity increment with
an appearing mechanism in the grain boundary of the
RE;Fe;sB magnetic phase [9].
mechanisms are proposed. Some consider the impact of
the RE-rich (RE: Rare Earth, for the most part, Nd-
boundary phase as magnetic protection of the RE;Fe;sB
magnetic phase, and others ignore the participation of
the boundary phase) [10].

There are necessarily two conceivable outcomes

Nowadays, a few

when it comes to creating coercivity at high
temperatures. The outcomes are upgrading the intrinsic
temperature reliance of the materials or creating
sufficient coercivity value at room temperature to
remain when the magnet is faced with high-temperature
[11].

coercivity following a nucleation- type coercivity

environments NdFeB magnets create their
mechanism. It is crucial to locally increase the HA
within the external shell of the grains, to the proximity
of much less than a micron, as any new another rare
earth in the RE;Fe,B grains [12]. It will substantially
decrease the value of the magnetization.

The purpose of this study was to use several
experimental techniques to define the relationship
between the optimized annealing conditions and
metallurgical transformations, also the microstructure
change due to annealing in the NdFeB grains and grain
boundary phase. The test samples were prepared by
several annealing conditions at various temperatures.
The magnetic properties were then measured and
analyzed by Permagraph, X-Ray Diffraction (XRD), and
(SEM)-Energy-
Dispersive X-ray Spectroscopy (EDS) observations.

Scanning  Electron = Microscope
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m EXPERIMENTAL SECTION
Materials

The material used in this experiment was a
commercial NdFeB-type permanent magnet sample that
has an initial coercivity of 13.7 kOe, which compositions
are listed in Table 1.

Instrumentation

SANTE-High
Temperature Vacuum Tube Furnace, Lab made grinding

Instruments  used  included
and polishing machine, Permagraph Magnet Physik,
JEOL SEM machine type JSM6360LA, and Maxima XRD

machine.
Procedure

The un-magnetized samples were cut to the
dimension of 12 x 12 x 5 mm and then put into the argon-
filled vacuum heat treatment furnace. Afterward, they
were annealed using several annealing conditions and
various temperatures. The annealing temperature is set at
800, 850, 900, 950, 1000, and 1050 °C and held for 2 h.
Subsequently, the post-annealing temperature is set at
500 °C, also held for 2 h. The heat treatment cycle of this
research is shown in Fig. 1.

The value of magnetic coercivity is obtained by
permagraph observation, which measures the reverse
magnetic field that is applied to the sample, which
changes the magnetized sample into fully demagnetized.
Meanwhile, the chemical composition and metallurgical
transformations appearing in the grains and grain
boundary of the RE;Fe;4B magnetic phase are observed by
X-Ray Diffraction (XRD) and Scanning Electron

800, 850, 500, 950, 1000, 1050

™
ALl

Vac. (2 = 10-= mbar)

Temperature (*C)

120

Microscope (SEM)/Energy-Dispersive X-ray

Spectroscopy (EDS).
m  RESULTS AND DISCUSSION
Permagraph Result Analysis

NdFeB-phase is the main element of the magnetic
force in the NdFeB-type permanent magnet. The
amount of NdFeB is related to high coercivity. The more
of NdFeB contained, the higher coercivity is achieved.
The presence of NdFeB-phase can be produced by
casting NdFeB alloy. However, not all the elements are
combined to developed NdFeB-phase by casting only;
many of them are spread out become a-Fe, Nd Rich, FeB,
and so on. The Heat treatment for NdFeB-type
permanent magnet is one of the processes that can be
conducted to recombine the spread out elements into
developing new NdFeB-phases.

The permagraph result shows that magnetic
coercivity is increased after the heat treatment process.
It is noticed that the highest coercivity (19 kOe) is
achieved at 850 °C of annealing temperature [13].
Afterward, the coercivity is gradually decreased when
the temperature is increased, but still higher than the
initial coercivity, shown in Fig. 2.

Table 1. Composition of commercial NdFeB-type
permanent magnet for the experiment

No. Element wt (%)
1 Nd (Neodymium) 28.07
2 Fe (Iron) 70.2
3 B (Boron) 1.1
4 Nb (Niobium) 0.3
5 Ga (Gallium) 0.33
500
¥ Wac. (2 = 10-5 mbar) Ll%lim
)
i 120 Time tmi-rl.]

Fig 1. Variable of time and temperature for heat treatment process
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Fig 2. The change of coercivity at increased annealing

temperature

The selected temperatures for the characterization
of this research in the microstructure phase by XRD and
microstructure composition by SEM from samples after
heat treatment are at 850, 900, and 1050 °C are conducted
and analyzed. The temperatures 850 and 1050 °C are
selected because they show the highest and lowest
coercivity, respectively. The 900 °C annealing temperature
presents a condition where the coercivity is starting to
decrease. The annealing condition at 800, 950, and 1000 °C
are not being analyzed any further since 800 °C is already
represented by initial coercivity, which is before optimum
temperature. The 850 °C annealing condition is very
important, because at this temperature, the coercivity is at
the maximum value. Because the decrease of coercivity is
already started at 900 °C, after optimum condition at
850 °C, the 950 °C annealing condition will not be
significant anymore. The 1050 °C annealing condition,
where the coercivity is the lowest, has a significant
difference in the data compare to 1000 °C. By having data
at optimum condition (850 °C), before optimum condition

(initial), and after optimum condition (900 and 1050 °C),
the discussion is compact and comprehensive.

Annealing temperature and annealing time are the
crucial parameters for controlling grain development.
The crystallizations are depending on the composition
[14]. With quick annealing tempering of 60 s at 500 °C,
it is conceivable to get the grain sizes of 50 nm and a
coercive field Hc up to 20 kOe [15].

XRD Result Analysis

The XRD results in Fig. 3 show a phase-change in
the samples after the heat treatment process. At 850 °C,
which is the optimum temperature for coercivity
enhancement, contain the highest amount of NdFeB-
phase [16]. A compelling way to extend coercivity is to
decrease the grain size underneath the single domain
particle size. This can be frequently found in NdFeB
layers, where the size is indeed more significant than the
lateral grain size [17]. The switchover of coupling
between neighboring grains leads to the interaction for
each domain. For the most part, the domain walls will
take after the grain boundaries, illustrating their pinning
impact. In this manner, the coercivity enhancement
follows the decline of grain size and the magnetically
decouple of the closest grains.

From the XRD analysis result, it is described that
there are phase-changed in the samples after heat
treatment. The amount of NdFeB-phase is increased
after heat treatment at 850 °C. However, when the heat
treatment temperature is set at a higher temperature
(900, 1050 °C), the coercivity is decreased due to the
decomposition of the NdFeB-phase. Table 2 shows the
change of coercivity value because of the NdFeB-phase
composition amount.

In Nd-Fe-B sintered magnets, there are several
secondary phases, such as a-Fe, NdFe (Nd-rich), FeB, and

Table 2. The relation between phase composition and coercivity

Phase composition (%)

Coercivity samples

Samples

Fe Nd NdFe FeB FeB (kOe)
Initial 2.1 0.3 5.2 92.3 0.1 13.7
850 °C 25.2 3.1 14.5 13.2 44 19
900 °C 5.5 0.6 9.8 76.7 7.4 17.5
1050 °C 21.5 0 73.1 3.7 1.6 14.5
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Fig 3. Phase-change at samples after heat treatment process by XRD

Initial

SEM

EDS

Fig 4. Microstructure of samples after heat treatment by SEM

oxides [18]. At the 850 °C annealing temperature, those
secondary phase compositions are transformed into new
NdFeB-phase. These cause an increase of coercivity due
to the increased annealing temperature.

1050 °C

SEM-EDS Result Analysis

The SEM observation results of samples after heat
treatment are shown in Fig. 4. The images point to a grey
and white area. The grey area represents the NdFeB grain,
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and the white area represents grain boundaries [19-20].
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The white area is representing the grain boundaries.

The EDS results show that the composition in the  The lowest Fe content (12.22%) in the grain boundaries

grey area and white area. Fig. 5 shows the composition  is observed at 850 °C, as shown in Table 3. When the Fe

content of the grey area and white area, where the rare-  content is low, the grain will be considered as

earth and Fe composition are shown in Table 3. magnetically separated (magnetic decoupling) that gives

Area SEM-EDS

White

Element Weight % Atomic% Netint. Emor% Ko 2 R A F
CK 14 02 208 1349 00166 14500  O7ER2 0330 10000

Pl 7% 901 16853 1085  OM850 09065 10B9 (0340 11002

FeK BR A H20 48 06 IM% 090 02 109
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CoK. 1m 178 6181 1782 00174 10308 05TT1 08410 10345
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900 °C
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H

Fig 5. Composition of white and grey area in the sample after heat treatment by EDS
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Area SEM-EDS
1 Element Weight % Atomic% Netint. Emor%  Kratio z R
BK 1B M2 W24 1317 00RI3 181 OTTES 040 10000
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Fig 5. Composition of white and grey area in the sample after heat treatment by EDS (Continued)

Table 3. Composition of Rare-Earth (RE) and Fe in white and grey area of the sample after heat treatment by EDS

Composition (%)

Area Color Initial 850 °C 900 °C 1050 °C
RE Fe RE Fe RE Fe RE Fe
White 58.39 33.02 71.38 12.22 55.15 37.39 5696 24.24
Grey 29.98 63.6 24.2 68.66 23.8 67.77 24.13 67.74
Coercivity (kOe) 13.7 19 17.5 14.5

high coercivity. On the other hand, when the Fe content
in the white area is high (37.39% at 900 °C), the coercivity
is lower. These can be explained as Fe has high magnetic
conductivity (ferromagnetic) [21]. If the grain boundaries
have high Fe content, then the neighboring grains will be
considered as one big grain that causes low coercivity.

Paramagnetic component addition, such as RE
(Rare-Earth), in this case, neodymium in NdFeB, creates
a neodymium-rich intergranular paramagnetic stage that
decouples the ferromagnetic NdFeB grains. The decoupling
avoids the nucleation initiated by the closest grains and
heighten the coercivity. The highest RE content (71.38%)
in the grain boundaries is observed at 850 °C, as shown in
Table 3. When the RE content is high, then the grain will
be considered as magnetically separated (magnetic
decoupling) that gives high coercivity. However, the grain
size will shrink, and the energy production can be
achieved effectively with neodymium concentrations
higher than the stoichiometric composition [22].

A previous study in manipulating grain boundaries
[23] shows that the continuous grain boundaries are
developed after annealing, which causes the increase of
magnetic coercivity for the NdFeB-type permanent
magnet. Our study result compliments their data by
defining the continuous grain boundaries crystal phase
where the RE or Fe content in the grain boundaries gives
a significant effect to coercivity value, as shown in Table
3. Further study is needed to determine the homogeneity
of the metal distribution in the sample by Electron Probe
Micro Analyzer (EPMA), despite localize measurement
from EDS.

m CONCLUSION

From the experiments, it shows clearly that the
coercivity enhancement of NdFeB type permanent
magnet by heat treatment process is due to the
increasing amount of NdFeB-phase in the grain and the
magnetically separation between the neighboring grains.
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This result gives the necessary information for any effort
in increasing the magnetic properties of NdFeB-type
permanent magnet.
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