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 Abstract: This study aims to use hydrogenic orbitals within an analytic and numeric 
parameter-free truncated-matrix method to solve the projected Schrödinger equation of 
some helium-like ions (3 ≤ Z ≤ 10). We also derived a new analytical expression of the 
ion ground state energies, which was simple and accurate and improved the accuracy of 
the analytic calculation, numerically using Mathematica. The standard matrix method 
was applied, where the wave function of the ions was expanded in a finite number of 
eigenvectors comprising hydrogenic orbitals. The Hamiltonian of the systems was 
calculated using the wave function and diagonalized to obtain their ground state energies. 
The results showed that a simple analytic expression of the ground state energies of He-
like ions was successfully derived. Although the analytic expression was derived without 
involving any variational parameter, it was reasonably accurate with a 0.12% error for 
Ne8+ ion., The accuracy of the analytic energies was also numerically improved to 0.10% 
error for Ne8+ ion from this method. The results clearly showed that the energies obtained 
using this method were more accurate than the hydrogenic perturbation theory and the 
uncertainty principle-variational approach. In addition, for Z > 4, our results were more 
accurate than those from the geometrical model. 

Keywords: helium-like ions; ground state energies; parameter-free matrix method; 
hydrogenic orbital approximation; projected Schrödinger equation 

 
■ INTRODUCTION 

Theoretical calculations of energies of two-electron 
systems such as helium and helium-like ions have been 
attractive since the discovery of quantum mechanics [1] 
because these systems are the most simple many-body 
systems, and therefore, traditionally used as a testing 
ground for various methods in theoretical quantum 
calculations [2]. In addition, highly accurate experimental 
data for such systems are available, which can be used as 
a reference to evaluate the accuracy of theoretical 
calculations. 

A large number of theoretical studies have been 
conducted to calculate the energies of helium-like ions 
accurately. The methods used in the studies ranged from 
the most sophisticated to the simplest ones. Some 
relatively new advanced calculations were quantum 
electrodynamics calculations [2-3], explicitly correlated 

basis sets derived from regularized Krylov sequences [4-
6] and discrete variational-perturbation approach based 
on explicitly correlated wave functions [7-8]. 
Furthermore, some highly accurate calculations on the 
energies of the ions using various methods were recently 
reported, including the application of the free iterative 
complement interaction method [9-10], Non-
Relativistic QED (NRQED) [11], and Quantum 
Mechanics of Coulumb Charge (QMCC) [12]. Older 
sophisticated calculations include the work of Pekeris, 
who applied the iteration method with the use of 
perimetric coordinates in the wave function expansion 
[13]. In general, up to thousands of variational 
parameters were used in most sophisticated calculations 
to produce highly accurate energies of helium-like ions 
[14]. However, these methods mostly involved tedious 
analytical calculations and or expensive numerical 
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calculations, mainly due to many parameters in their 
calculations. Moreover, wavefunctions obtained from 
such methods are often computationally prohibitive to be 
used in calculating cross-sections of many physical 
processes such as double ionization of atoms by ion [14]. 
Therefore, finding simpler wavefunctions with a low 
number of parameters is essential for studying those 
physical processes. 

In addition to the methods mentioned above, several 
relatively more straightforward methods have also been 
developed recently by reducing the number of variational 
parameters. For instance, Liverts and Barnea [15] 
performed numerical calculations, which only used three 
parameters as inputs in their Mathematica code. Some 
analytical calculations using trial wave functions with a 
minimum number of parameters were also developed 
[16]. The final form of the proposed wavefunction can be 
written as a parameter-free function. However, the 
calculations to obtain its final form still involved 
optimizing a parameter in the initially proposed 
wavefunction. A numerical calculation using the 
variational method was also applied in [17]. Moreover, a 
parameter-free-like method using a simple geometrical 
model was developed by Gomez [18] to calculate the 
energies of helium-like ions. In this geometrical model, 
there was only a single parameter used in the calculations, 
but errors were still relatively large, especially for ions 
with large Z. 

The simplest possible method to calculate the 
energies of helium-like ions is to use the hydrogenic 
orbital approximation. In this method, two-electron wave 
functions of the ions are written as the Hartree product of 
two hydrogenic orbitals. In this approach, correlated wave 
functions, which often make theoretical calculations more 
complicated, are neglected, and no variational parameter 
is needed [19]. However, the ground state energy results 
have relatively large errors, especially for the ions with 
relatively small atomic number Z, which indicates a large 
discrepancy between results obtained from the simplest 
methods with those from the most accurate ones. Hence, 
finding a simple yet accurate method to calculate energies 
of two-electron atoms such as helium-like ions remains a 
significant challenge. 

To increase the accuracy of the hydrogenic 
standard perturbation theory, a simple numerical 
calculation using the hydrogenic orbital approximation 
in the framework of a matrix calculation was introduced 
by Masse and Walker [20]. In their work, a numerical 
calculation using a Mathematica code containing only 
seven lines was applied to calculate the three lowest 
energies of the helium atom with reasonable accuracy. 
Although the method did not require any parameter in 
the calculation, it managed to significantly reduce errors 
obtained from the standard 1st order perturbation 
theory. Furthermore, a simple analytical matrix method, 
based on the work of [20], was developed in our previous 
work [21] to obtain accurate analytical energies of the 
helium atom. The numerical and analytical matrix 
approach applied in the two studies performed well for 
helium and yielded much more accurate energies than 
those from the 1st order standard hydrogenic 
perturbation theory. This method was also applied 
recently in our previous study to obtain the first excited 
state energies of some helium-like ions with reasonable 
accuracy [22]. 

To the best of our knowledge, the parameter-free 
matrix method has not been used to calculate the ground 
state energies of helium-like ions. Also, since the method 
has proven accuracy when used with the helium atom 
[20-21], it should perform better if applied to other two-
electron systems such as helium-like ions with larger 
atomic numbers than the helium atom. 

The purpose of the present study was to extend the 
parameter-free matrix method to obtain accurate 
ground state energies of light helium-like ions (3 ≤ Z ≤ 
10) with analytic and numeric calculations. The 
Mathematica code of Masse and Walker [20] and the 
analytic matrix method [21] were used for the numerical 
and analytical calculations, respectively. In this work, 
only s-orbitals were included in the wave functions to 
avoid long calculations. To demonstrate the ease of the 
method, a simple analytic expression for energies of any 
helium-like ion, which only depends on the atomic 
number Z, was derived in this work. This analytical 
expression can then be used as an easy-to-use equation 
to calculate the energies of helium-like ions. With this 
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parameter-free and straightforward method, this work 
aims not to better highly advanced variational calculation 
methods but to produce more accurate ground state 
energies of helium-like ions than other simple approaches 
in the literature, with much less algebra and minimum 
computational time. Hartree atomic units were used 
throughout this work. 

■ COMPUTATIONAL METHODS 

The parameter-free matrix method solved the 
projected Schrödinger equation in a finite subspace. The 
Hamiltonian was in the form of a finite square matrix, and 
the wave functions were in the form of a column vector. 
The Hamiltonian matrix elements were calculated after 
the wave function was defined to solve the energy 
eigenvalue equation. In this work, the two-electron wave 
function of the ions was written as a linear combination 
of basis states formed from the Hartree product of two 
hydrogenic orbitals. Once the Hamiltonian matrix 
elements were found, the last step was to solve the secular 
equation to obtain energy eigenvalues of the ions. The 
ground state energy was the smallest among the energy 
eigenvalues obtained. The formulations needed to 
perform those calculations are presented below. The non-
relativistic time-independent Schrödinger equation 
projected into a finite subspace for two-electron atoms 
(ions) with a fixed nucleus is 
Ĥ EΨ = Ψ  (1) 
or explicitly as 

2 2
1 2

1 2 12

Z Z 1 E
2 2 r r r

 ∇ ∇
 − − − − + Ψ = Ψ
 
 

 (2) 

where r1 and r2 are the nuclear-electron distance of 
electron 1 and electron 2, respectively, r12 is the electron-
electron distance, and Z is the atomic number of the ions. 
In the orbital approximation, the wavefunction in Eq. (2) 
can be written as a linear combination of the Hartree 
product of hydrogenic orbitals as 

n n

i i 11 1 1 1i 1 i i1 i 1
i 1 i 2

c c c c
= =

Ψ = Φ = φ φ + φ φ + φ φ∑ ∑  (3) 

where φ1 is the hydrogenic orbital of an electron in the 
ground state and φi is that of the other electron, which can 
be in any state of the helium-like ions. The number of 

terms in the expansion depends on the number of basis 
states one wants to use in the calculation. Elements of 
the Hamiltonian matrix is determined using Eq. (4) 

pq p qH H= Φ Φ  (4) 

substituting the explicit form of Hamiltonian in Eq. (2) 
into Eq. (4) yielded 

2 2

pq pq p q2 2
121 2

Z Z 1H
r2n 2n

 
 = − − δ + Φ Φ
 
 

 (5) 

where the first two terms in Eq. (5) are the two hydrogenic 
one-electron solutions of the non-relativistic 
Schrödinger equation. The electron-electron interaction 
potential in Eq. (5) can be determined using Eq. (6) 

( ) ( ) ( )
l

m m m
l 1 l 2l 1

12 lm

2 1
1

1 2
2

r1 4V 1 Y Y
r 2l 1 r

1 ,   if r r    
rV 1 ,   if r r
r

−<
+
>

π
= = − Ω Ω

+
 <= 
 <


∑

 (6) 

Each hydrogenic orbital |φi⟩ used in the basis states |Φp⟩ 
is the product of the radial function and the spherical 
harmonics. Since only s-orbitals were used in this article, 
the orbital can then be written as 

0
n00 n0 0(r, , ) R (r)Yφ θ φ =  (7) 

where the well-known hydrogenic radial function for s-
orbitals can be written in terms of Laguerre polynomials as 

( ) i
1

Zr
2 1 in

n0 i n 12

Z n 1 ! 2Zr2ZR (r ) e L
n nn (n)!

−
−

 −    =     
     

 (8) 

Substituting Eq. (7) and (8) into Eq. (5) and 
integrating it over all space yields 

( ) 1 2

3 4

2 2 40
pq pq 0 n 0 1 n 0 22 2

1 2
3 3

n 0 1 n 0 2 1 2
12

Z ZH Y R (r )R (r )
2n 2n

1          R (r )R (r )d r d r
r

 
 = − − δ +
 
 

∫∫
 (9) 

Since the angular part of the integrations canceled (Y00)4, 
Eq. (9) becomes 

1 2

3 4

2 2
2

pq pq 1 n 0 1 n 0 22 2
1 2

2
2 n 0 1 n 0 2 1 2

12

Z ZH r R (r )R (r )
2n 2n

1           r R (r )R (r )dr dr
r

 
 = − − δ +
 
 

∫∫
 (10) 

By  substituting  Eq.  (8) into  Eq.  (10), r12  and r22  can be  



Indones. J. Chem., 2021, 21 (4), 1003 - 1015   
        
                                                                                                                                                                                                                                             

 

 

Redi Kristian Pingak et al.   
 

1006 

absorbed into the radial functions, and therefore, Eq. (10) 
has a simpler form as 

1 2

3 4

2 2

pq pq n 0 1 n 0 22 2
1 2

n 0 1 n 0 2 1 2
12

Z ZH P (r )P (r )
2n 2n

1           P (r )P (r )dr dr
r

 
 = − − δ +
 
 

∫∫
 (11) 

As a consequence, a modified radial function Pn0(ri) has 
to be defined as 

( ) i
1

Zr
2 1i in

n0 i n 12
Z n 1 ! 2Zr 2Zr

P (r ) e L
n nn (n)!

−
−

 −     ≡      
     

 (12) 

where i =1,2. Eq. (11) was the expression used to 
analytically and numerically calculate elements of the 
Hamiltonian matrix in this article. 

After the Hamiltonian matrix was obtained, the 
secular equation, see Eq. (13), was simply solved to obtain 
all energy eigenvalues (assuming the Hamiltonian matrix 
is of size j × j). 

11 12 1j

21 22 2j

j1 j2 jj

H E H ... H
H H E ... H

det 0
... ... ... ...

H H ... H E

− 
 −  =
 
 − 

 (13) 

Solutions to Eq. (13) contain j energy eigenvalues, and the 
lowest energy corresponds the ground state energy of the 
He-like ions. In this work, Eq. (11) and (13) were solved 
both analytically and numerically. 

■ RESULTS AND DISCUSSION 

Analytic Expression for the Ground State Energies 
of He-Like Ions and Analytical Results 

In this section, an analytic expression for the He-like 
ion energies was derived using the free-parameter matrix 
method with three basis states. First, Eq. (3) was used to 
determine the two-electron wavefunction expanded in 
three basis states consisting of hydrogenic s-orbitals, as 
shown in Eq. (14) 

11 12 21c 1s1s c 1s2s c 2s1sΨ = + +  (14) 
Then, the Hamiltonian was in the form of a 3 × 3 

matrix, whose nine components were determined using 
Eq. (11). To determine H11, one had 

2
11 10 10 10 10

12

1H Z P P P P
r

= − +  (15) 

P10 was simply determined using Eq. (12), which was 
then substituted into Eq. (15) to obtain (in integral form) 

1 22Zr 2Zr2 4 6 2 2
11 1 2 1 2

12

1H Z 2 Z r e r e dr dr
r

− −= − + ∫∫  (16) 

To evaluate the integral in Eq. (16), one could rewrite it as 

( )12Zr2 4 6 2
11 1 2 1

0
H Z 2 Z r e I dr

∞
−= − + ∫  (17) 

where I2 had been defined to be 

22Zr2
2 2 2

120

1I r e dr
r

∞
−≡ ∫  (18) 

using Eq. (6) and detail procedures in [21], one obtained 

( ){ }12Zr
2 13

1

1I Zr 1 e 1
4Z r

−= − − +  (19) 

substituting Eq. (19) back into Eq. (17) yielded 

( ){ }1 14Zr 2Zr2 3 2
11 1 1 1 1

0
H Z 4Z Zr r e r e dr

∞
− −= − + − − +∫  (20) 

Similarly, other elements of the Hamiltonian 
matrix were obtained using the same procedures 
involved in obtaining H11. The other elements could be 
easily proven to be equal to Eq. (21), Eq. (22) and Eq. (23). 

1

1

12 21 13 31
7Zr2

3 2 2
1 1 1

3
13Zr

0 2 2
1 1

H H H H

Z Zr r r e
2 2        2Z dr
Z r r e
2

−

∞

−

= = =
  
 − − +    =  
  − +    

∫
 (21) 

( ) 1
4

3Zr2 4 3 2
23 32 1 1 1 13

0

2ZH H 3Z r 4Zr 4r e dr
3

∞
−= = − + +∫  (22) 

1

1

22 33
3 2

3Zr4 3
1 1 12 3

12
Zr3 20

1 1 1

H H

Z 3Zr r r e
4 45Z Z        dr

8 2 Z r Zr r e
4

−
∞

−

=
  
 − + − +   −  = +    − +   
  

∫
 (23) 

Eq. (20) to Eq. (23) were then evaluated to obtain all 
elements of the Hamiltonian matrix, as shown in Eq. 
(24). All are in Hartree atomic units. 

5 4096 4096Z Z 2 Z 2 Z
8 64827 64827

4096 5 17 16H 2 Z Z Z Z
64827 8 81 729
4096 16 5 172 Z Z Z Z

64827 729 8 81

      − −      
      

    = − −            − −        

 (24) 
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Finally, to calculate the ground state energies of He-like 
ions, the secular equation in Eq. (13) was then solved as 
shown in Eq. (25) 

5 4096 4096Z Z E 2 Z 2 Z
8 64827 64827

4096 5 17 16det 2 Z Z Z E Z 0
64827 8 81 729
4096 16 5 172 Z Z Z Z E

64827 729 8 81

      − − −      
      
    − − − =            − − −        

 (25) 

Eq. (25) is a very simple expression for energies of 
helium-like ions because it only depends on the atomic 
number Z of the ions. In that equation, an otherwise 
complicated calculation to solve the Schrödinger equation 
has been reduced into a simple calculation of the 
determinant of a 3 × 3 matrix. The calculation of the 
ground state energies of any He-like ion was done by 
substituting the atomic number Z of the ions into Eq. (25). 
The equation was then solved analytically to obtain three 
energy eigenvalues of the ions, with the lowest energy was 
the ground state energy. The obtained ground state 
energies for helium-like ions (3 ≤ Z ≤ 10) are shown in 
Table 1. 

Numerical Calculation of the Ground State 
Energies of Helium-like Ions 

As the number of basis state increases, energies are 
expected to be more accurate because more physical 
information is included in the wavefunction. It was 
proven to be valid in the study of the helium atom [21]. It 
would also make the analytical calculation very inefficient 
to perform for more than three basis states. Therefore, a 
numerical calculation using a simple Mathematica code 
was used here to perform the calculation. 

It is important to state the meaning of analytical and 
numerical terms used in this article. Analytical calculation 
refers to the calculation by hand involving only 3 basis 
states and 3 × 3 Hamiltonian matrix. Meanwhile, 
numerical calculation refers to a calculation involving 
more than 3 basis states, i.e., Hamiltonian of size greater 
than 3 × 3. In addition, the numerical calculation was 
performed using a Mathematica code involving a matrix 
of size 25 ×25. Here, 25 basis states were used, which can 
be written as 

13

11 1n n1
n 2

c 1s1s c 1sns c ns1s
=

Ψ = + +∑  (26) 

and therefore, the Hamiltonian was a 25 × 25 matrix, as 
shown below 

1,1 1,2 1,25
2,1 2,2 2,25

25,1 25,2 25,25

H H ... H
H H ... H

H ... ... ... ...
H H ... H

 
 
 =
 
  

 (27) 

and the corresponding secular equation was 
1,1 1,2 1,25

2,1 2,2 2,25

25,1 25,2 25,25

H E H ... H
H H E ... H

det 0... ... ... ...
H H ... H E

− 
 −
  =
 

−  

 (28) 

The calculations of all matrix elements in Eq. (27) using 
Eq. (11) and the solutions to the secular equation in Eq. 
(28) were performed using a Mathematica code 
modified from [20]. 

All the numerical energies are presented in Table 1 
along with energies obtained from other simple 
approaches available in the literature, such as the 
geometrical model (GM) [18], the hydrogenic 1st order 
perturbation theory (SPT) [19], and the uncertainty 
principle-variational approach (UPV) [23]. The exact 
ground state energies of the ions were taken from [13] 
and were used to calculate the percentage errors, as 
shown in Table 1. Corresponding experimental values 
for the respective atoms were adapted from [24] and also 
shown in Table 1. 

Comparisons with Ground State Energies using 
other Simple Methods 

From Table 1, it is clear that our method yielded 
reasonably accurate ground state energies of helium-like 
ions. The least accurate result of our method was 
obtained for the He atom [19], with percentage errors of 
2.51% and 2.02%, respectively, from our analytical and 
numerical calculations. Although this result for the He 
atom was less accurate compared to the geometrical 
model [18] (0.32% error), it was still more accurate than 
the results of the first-order perturbation theory [19] 
(5.28% error) and uncertainty principle-variational 
approach [23] (2.60% error). The most accurate results 
in this article were obtained for the ground state energy  
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Table 1. Ground state energies of helium atom and light he-like ions from our analytical calculation (AC), our 
numerical calculation (NC), the geometrical model (GM) [18], standard first-order perturbation theory (SPT) [19] 
and the uncertainty principle-variational approach (UPV) [23]. Energies are in atomic units 

Atom/ 
Ion 

AC 
(% error) 

NC 
(% error) 

SPT 
(% error) 

GM 
(% error) 

UPV 
(% error) 

Exact 
[13]  

Experiment 
[24] 

He 
-2.8304ƚ 
(2.51%) 

-2.8446ƚ 
(2.02%) 

-2.7500 
(5.28%) 

-2.9128 
(0.32%) 

-2.8279 
(2.60%) 

-2.9034 -2.90338 

Li+ 
-7.1886 
(1.25%) 

-7.2053 
(1.02%) 

-7.1250 
(2.16%) 

-7.3249 
(0.62%) 

-7.1880 
(1.26%) 

-7.2799 -7.2790 

Be2+ 
-13.5570 

(0.72%) 
-13.5740 

(0.60%) 
-13.5000 

(1.18%) 
-13.7373 

(0.60%) 
-13.5486 

(0.78%) 
-13.6556 -13.6574 

B3+ 
-21.9285 

(0.47%) 
-21.9455 

(0.39%) 
-21.8750 

(0.75%) 
-22.1477 

(0.53%) 
-21.9083 

(0.56%) 
-22.0310 -22.0360 

C4+ 
-32.3014 

(0.32%) 
-32.3183 

(0.27%) 
-32.2500 

(0.52%) 
-32.5573 

(0.47%) 
-32.2672 

(0.43%) 
-32.4062 -32.4174 

N5+ 
-44.6749 

(0.24%) 
-44.6918 

(0.20%) 
-44.6250 

(0.39%) 
-44.9661 

(0.41%) 
-44.6252 

(0.35%) 
-44.7814 -44.8035 

O6+ 
-59.0489 

(0.18%) 
-59.0657 

(0.15%) 
-59.0000 

(0.31%) 
-59.3751 

(0.37%) 
-58.9824 

(0.29%) 
-59.1566 -59.1958 

F7+ 
-75.4231 

(0.14%) 
-75.4398 

(0.12%) 
-75.3750 

(0.25%) 
-75.7833 

(0.33%) 
-75.3388 

(0.26%) 
-75.5317 -75.5441 

Ne8+ 
-93.7975 

(0.12%) 
-93.8142 

(0.10%) 
-93.7500 

(0.21%) 
- 

(-) 
-93.6943 

(0.23%) 
-93.9068 -94.0086 

ƚenergies were taken from our previous calculation in [21] 
 
of Ne8+, with errors reaching as small as 0.12% from our 
analytical calculations and 0.10% from our numerical 
calculations, which are more accurate than standard 
perturbation theory, uncertainty principle-variational 
approach, and the geometrical model. The comparisons 
of the percentage errors of our analytical (AC) and 
numerical energies (NC) with other relatively simple 
calculations are shown in Fig. 1. 

It should be noted that although our model 
generated more accurate energies than the geometrical 
model for Z > 4, the geometrical model was much more 
accurate than ours for Z = 2 and Z = 3. In particular, % 
errors from our numeric calculation were about 6.3 times 
larger than that from the geometrical model for the 
helium atom and approximately 1.6 times larger for the 
Li+ ion. This strongly indicates that a general conclusion 
about whether our model or the geometrical model was 
more accurate in calculating ground state energies of two-
electron systems can not be drawn. On the other hand, 
our model was more accurate than the standard 

perturbation theory calculated in [19] and the 
uncertainty principle variational calculation presented 
in [23]. 

Fig. 1 clearly shows the numerical results are more 
accurate than the analytical ones, especially for small Z. 
The accuracy is the result of the 25 basis states used in 
the numeric calculation, compared to only three basis 
states in the analytic one. For larger atomic number, the 
differences between the two become less obvious. It 
indicates that adding the number of basis states does not 
significantly impact the accuracy of our calculations for 
ions with a relatively large atomic number. The 
discussion on this is presented in the following section. 

As shown in Fig. 1, the results indicate that errors 
from our analytical and numerical calculations for all 
ions were much smaller than those from standard 
perturbation theory [19] and the uncertainty principle-
variational approach [23]. In particular, for ions with a 
small atomic number such as Li+ and Be2+, calculation 
using the  standard  perturbation  theory  gives  errors of  
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Fig 1. Percentage errors of our calculation (AC and NC) 
are compared with those from standard perturbation 
theory (SPT) [19], the geometrical model (GM) [18], and 
the uncertainty principle-variational approach (UPV) 
[23] as a function of atomic number Z (3 ≤ Z ≤ 10) 

about 2.16% and 1.18%, respectively. Errors from our 
method for the respective ions are 1.25% and 0.72% 
(analytic) and 1.02% and 0.60% (numeric). These results 
indicate that our method significantly reduces errors 
obtained from standard perturbation theory for He-like 
ions, especially for ions with relatively small atomic 
number Z. Errors from our numeric energies for all ions 
are also much lower than errors found in [23]. Although 
our analytic calculation for Li+ ion has approximately the 
same error as in [23], as atomic number increases, error 
from our calculations becomes much smaller than that 
from their calculations. Furthermore, comparisons to the 
geometrical model [18] show that for Li+ (Z = 3), our 
energy calculation is less accurate. For Be2+ (Z = 4), the 
error from our numerical calculation is the same as that 
from the geometrical model. For Z > 4 (B3+ through F7+), 
all our analytical and numerical energies are much better 
than those from the geometrical model. It also indicates 
that as nuclear charge increases, our approach becomes 
much more powerful than the geometrical model. 

It should be noted that the accuracy of our results 
(which did not use any variational parameter) is, of 
course, not to be compared with the accuracy of 

calculations using several or even hundreds to 
thousands of variational parameters such as the work of 
[3,25-29] which reproduced experimental values and 
exact values of Pekeris [13]. As stated in the 
introduction, our simple calculation in this paper was 
only intended to demonstrate that using the hydrogenic 
orbitals without correlation function in a simple matrix 
calculation could be more accurate than some other 
simple methods in the literature. 

Percentage Errors as a Function of Atomic 
Number Z 

Table 1 also shows that the percentage errors 
decrease as the atomic number of the ions increases. The 
results were reliable because as the atomic number 
increases, electrostatic interaction between nuclei and 
electrons becomes more dominant compared to mutual 
interaction between the two electrons [19]. Most 
recently, Rahman et al. [30] calculated the electron-
electron repulsion energies and Coulomb ionic energies 
of the He atom and some He-like ions (Li+ and Be2+) and 
found that as atomic number increases, the increase in 
the ionic energies of the ions was much more significant 
than that in the electron-electron repulsion energies. 
They found that the ionic energies of He, Li+ and Be2+ 
were -6.7533 a.u., -16.1275 a.u., and -29.5020 a.u., 
respectively, while the repulsion energies of the 
respective ions were 0.9458 a.u., 1.5677 a.u., and 2.1909 
a.u. It is clear from these results that the increase in the 
repulsion energies was much less than the increase in the 
ionic energies as Z increases. This was caused by the fact 
that electrons are more localized near higher Z ions [30]. 
Therefore, the fact that our approximation does not 
include electron correlation function in the 
wavefunction has led to lower percentage errors in 
ground state energies for ions with larger atomic 
numbers has already been anticipated. 

To further clarify this, the probability amplitudes for 
each state used in the wave function expansion in our 
analytic and numerical calculation were calculated and 
presented in Table 2. 

There is a very clear indication from Table 2 that 
the largest contribution to the ground state energy of the  
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Table 2. Amplitudes c1i = ci1 of the states used in the wavefunction expansion |n1,l1,ml1;n2,l2,ml2⟩ of our analytical and 
numerical calculations 

Analytical Calculation 
State Li+ Be2+ B3+ C4+ N5+ O6+ F7+ Ne8+ 

|1,0,0; 1,0,0⟩ -0.9862 -0.9937 -0.9964 -0.9977 -0.9984 -0.9988 -0.9991 -0.9993 
|1,0,0; 2,0,0⟩ 0.1170 0.0792 0.0597 0.0478 0.0398 0.0342 0.0299 0.0266 
|2,0,0; 1,0,0⟩ 0.1170 0.0792 0.0597 0.0478 0.0398 0.0342 0.0299 0.0266 

Numerical Calculation 
State Li+ Be2+ B3+ C4+ N5+ O6+ F7+ Ne8+ 

|1,0,0; 1,0,0⟩ 0.9847 0.9927 0.9957 0.9972 0.9980 0.9985 0.9989 0.9991 
|1,0,0; 2,0,0⟩ -0.1101 -0.0760 -0.0578 -0.0466 -0.0390 -0.0336 -0.0294 -0.0262 
|2,0,0; 1,0,0⟩ -0.1101 -0.0760 -0.0578 -0.0466 -0.0390 -0.0336 -0.0294 -0.0262 
|1,0,0; 3,0,0⟩ -0.0415 -0.0296 -0.0229 -0.0186 -0.0157 -0.0136 -0.0119 -0.0107 
|3,0,0; 1,0,0⟩ -0.0415 -0.0296 -0.0229 -0.0186 -0.0157 -0.0136 -0.0119 -0.0107 
|1,0,0; 4,0,0⟩ -0.0243 -0.0174 -0.0135 -0.0110 -0.0093 -0.0080 -0.0071 -0.0063 
|4,0,0; 1,0,0⟩ -0.0243 -0.0174 -0.0135 -0.0110 -0.0093 -0.0080 -0.0071 -0.0063 
|1,0,0; 5,0,0⟩ -0.0167 -0.0120 -0.0093 -0.0076 -0.0064 -0.0055 -0.0049 -0.0043 
|5,0,0; 1,0,0⟩ -0.0167 -0.0120 -0.0093 -0.0076 -0.0064 -0.0055 -0.0049 -0.0043 
|1,0,0; 6,0,0⟩ -0.0124 -0.0089 -0.0069 -0.0056 -0.0048 -0.0041 -0.0036 -0.0032 
|6,0,0; 1,0,0⟩ -0.0124 -0.0089 -0.0069 -0.0056 -0.0048 -0.0041 -0.0036 -0.0032 
|1,0,0; 7,0,0⟩ -0.0098 -0.0070 -0.0054 -0.0044 -0.0037 -0.0032 -0.0028 -0.0025 
|7,0,0; 1,0,0⟩ -0.0098 -0.0070 -0.0054 -0.0044 -0.0037 -0.0032 -0.0028 -0.0025 
|1,0,0; 8,0,0⟩ -0.0079 -0.0057 -0.0044 -0.0036 -0.0030 -0.0026 -0.0023 -0.0021 
|8,0,0; 1,0,0⟩ -0.0079 -0.0057 -0.0044 -0.0036 -0.0030 -0.0026 -0.0023 -0.0021 
|1,0,0; 9,0,0⟩ -0.0066 -0.0047 -0.0037 -0.0030 -0.0025 -0.0022 -0.0019 -0.0017 
|9,0,0; 1,0,0⟩ -0.0066 -0.0047 -0.0037 -0.0030 -0.0025 -0.0022 -0.0019 -0.0017 

|1,0,0; 10,0,0⟩ -0.0057 -0.0040 -0.0031 -0.0026 -0.0022 -0.0019 -0.0016 -0.0015 
|10,0,0; 1,0,0⟩ -0.0057 -0.0040 -0.0031 -0.0026 -0.0022 -0.0019 -0.0016 -0.0015 
|1,0,0; 11,0,0⟩ -0.0049 -0.0035 -0.0027 -0.0022 -0.0019 -0.0016 -0.0014 -0.0013 
|11,0,0; 1,0,0⟩ -0.0049 -0.0035 -0.0027 -0.0022 -0.0019 -0.0016 -0.0014 -0.0013 
|1,0,0; 12,0,0⟩ -0.0043 -0.0031 -0.0024 -0.0019 -0.0016 -0.0014 -0.0012 -0.0011 
|12,0,0; 1,0,0⟩ -0.0043 -0.0031 -0.0024 -0.0019 -0.0016 -0.0014 -0.0012 -0.0011 
|1,0,0; 13,0,0⟩ -0.0038 -0.0027 -0.0021 -0.0017 -0.0014 -0.0012 -0.0011 -0.0010 
|13,0,0; 1,0,0⟩ -0.0038 -0.0027 -0.0021 -0.0017 -0.0014 -0.0012 -0.0011 -0.0010 

 
ions came from the |1,0,0; 1,0,0⟩ state, i.e. when the two 
electrons are in the ground state of the ions. This can be 
seen from the probability amplitude values (c112 ) for the 
|1,0,0; 1,0,0⟩ state which reached about 97.26% and 96.96% 
from our analytic and numeric calculations, respectively, 
for Li+ ion. A similar calculation was performed by [31], 
who found that the largest contribution to the ground 
state energy of the He atom was from |1,0,0; 1,0,0⟩ state 
(about 93%). Hutchinson et al. [31] found that the 
remaining contribution to the ground state energy of the 

He atom came from the higher l bound states as well as 
the unbound states of the atom. This is also in agreement 
with our results, as shown in Table 2. The importance of 
including hydrogenic unbound states and the bound 
states in the wavefunction was also discussed in [32-33], 
which also showed that reasonably accurate ground state 
energies of two-electron atoms could be generated by the 
matrix mechanics utilizing hydrogenic matrix 
mechanics. These studies supported the reasonably 
accurate results obtained in this article for he-like ions. 
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Meanwhile, Table 2 also indicated that the 
contribution from higher states was much smaller 
compared to the |1,0,0; 1,0,0⟩ with the lowest one came 
from the |1,0,0; 2,0,0⟩ state (c122 = 1.37%) for the analytic 
calculation and c1,13

2 = 1.44 × 10−3% for the|1,0,0; 13,0,0⟩ 
state from the numeric calculation for Li+ ion. 
Furthermore, it is clear from Table 2 that as the atomic 
number Z of the ions increases, the contribution of |1,0,0; 
1,0,0⟩ state to the ground state energies of the ions also 
increases while at the same time the contribution of the 
higher states decreases. For instance, the contribution was 
about 96.96% for Li+ ion (Z = 3), which increased and 
reached about 99.82% for Ne8+ ion (Z = 10). A similar 
finding was also reported by Tapilin [24,34], who used 
configuration weight function and showed that in all cases 
considered, the |1,0,0; 1,0,0⟩ configuration was an 
increasing function. He also showed that the growth of the 
|1,0,0; 1,0,0⟩ configuration slowed down with increasing 
nuclear charge Z and tended to be constant. This is in 
agreement with our results shown in Table 2 and Fig. 2. 
This also explains why energies from our calculation for 
larger Z ions were more accurate than those for lower Z 
ions, as shown in Table 1 and Fig. 1. This finding is 
visualized in Fig. 2, where probability amplitudes of the 
states used in the wave function expansion were plotted as 
a function of atomic number Z for analytic calculation 
(Fig. 2(a)) and numeric calculation (Fig. 2(b)). 

Fig. 2 demonstrates that contribution from the 
|1,0,0; 1,0,0⟩ state when using 3 basis states in our 
analytical calculation was approximately the same as 
that when using 25 basis states for a particular ion. There 
was a slight increase in the probability amplitudes of the 
state, but since the probability amplitudes almost 
reached 100%, further addition of hydrogenic s-bound 
states in the wave function using approximation here 
would not significantly improve the accuracy of our 
calculation. The use of correlation function involving 
variational parameters should therefore be included to 
significantly improve the results of our calculations, 
which has been performed using various method and 
widely reported in the literature. Including the 
correlation function and variational parameters would 
improve the accuracy. However, at the same time, the 
difficulty levels of the calculations increase, which was 
out of the scope of the present research. Calculation of 
electron correlation in He and He-like ions can be 
found, for example, in [35], which used the Laguerre-
based wave function to obtain the fully correlated wave 
function and the Hartree-Fock wave function. A similar 
calculation on the He atom using a modified Hylleraas 
trial function containing two linear parameters was also 
reported recently by Purwaningsih et al. [36]. 

Table 2 also clearly indicates that as the nuclear 
charge Z increased, the contribution from higher n states  

 
Fig 2. Probability amplitudes c1i

2 of states used in the wave function was plotted against the ion atomic number Z for 
the analytic calculation (a) and numeric calculation (b). Since |1,0,0; n,0,0⟩ and |n,0,0; 1,0,0⟩ states were equivalent, 
only |1,0,0; n,0,0⟩ states were shown 
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to the ground state energies of the ions decreased. This 
was expected because the same number of basis states 
were used in our calculation, meaning that the larger the 
contribution from the ground state configuration |1,0,0; 
1,0,0⟩ for a particular ion should lead to the smaller 
contribution from the higher n-state configuration |1,0,0; 
n,0,0⟩. The probability amplitudes continued to decrease 
for larger n for a particular ion for a particular matrix size. 

Comments on the Accuracy and Limitations of Our 
Method and Further Improvement 

The fact that our matrix method based on 
hydrogenic orbitals could generate reasonably accurate 
results with errors not larger than 1.02% for helium-like 
ions with Z ≥ 3 was expected since many studies have 
shown that the use of (modified) hydrogenic wave 
functions could produce accurate results. For instance, 
studies by [20] and our previous work [21-22] showed 
that the reasonably accurate ground state energy of the He 
atom and the first excited state energy of some light He-
like ions could be obtained using this method. In addition, 
the use of |1,0,0; n,0,0⟩ states, i.e. one electron was kept at 
the ground states, and the other one in a particular excited 
state n was used by Hall and Siegel [37], who applied the 
shooting method to obtain accurate excited state energies 
of the He atom in coordinate space. This type of state 
configuration was also used as a pseudo-two-body 
problem by Gueribah et al. [38], who used the 
experimental energies to determine the local equivalent 
potential of the He atom using the Heisenberg model. 
Moreover, was applied by Herschbach et al. [39] applied 
the scaling dimension technique to obtain accurate 
ground state energies of two-electron atoms based on the 
dimensional dependence of a hydrogen atom. In their 
study, zeroth-order hydrogenic wave function was used to 
evaluate the expectation values of the electron-electron 
repulsion in the two-electron atoms. Finally, Rahman et 
al. [40] used the linear combination of hydrogenic wave 
functions to obtain accurate energy levels of hydrogenic 
ions by means of an iteration technique. Their method 
was also extended to many-body problems and proven to 
be accurate for the calculation of the helium-like ions, 
especially the hydrogen anion. 

Since the results from our simple matrix calculation  

were reasonably accurate, the matrix method can be 
extended to study the chemical and physical properties 
of other systems. This was already done in some recent 
studies, such as in [41-43]. However, since we only used 
s-states |1,0,0; n,0,0⟩ in our wave function, results in this 
article could be improved by including higher bound l-
states |1,0,0; n,l,m1⟩ and continuum states. This would be 
our next focus on this topic. In addition, since no 
variational parameter and correlation function were 
involved in our calculation, results from our calculation 
were expected to have larger errors than those from 
other calculations involving variational parameters and 
correlation function. However, we have successfully 
shown that for ions with Z > 4, our parameter-free 
matrix results were more accurate than the geometrical 
model [18], which used one variational parameter in the 
model to calculate the ground state energy of the ions. 

■ CONCLUSION 

A parameter-free matrix method based on 
hydrogenic orbital approximations has been successfully 
applied in the present study to accurately calculate the 
ground state energies of helium-like ions from Li+ to 
Ne8+. A new and very simple analytic expression for the 
ground state energy of any helium-like ion was derived 
and has been proven to be reasonably accurate. A simple 
numerical calculation was also applied to improve the 
accuracy of analytical energies. Despite being simple, 
our results for all ions are much more accurate than 
some other simple methods available in the literature, 
such as the standard hydrogenic perturbation theory 
and the uncertainty principle-variational approach. In 
addition, our results are also more accurate than the 
geometrical model for Z > 4 (B3+ through F7+). Therefore, 
our method can be introduced as an alternative and 
reasonably accurate method to obtain ground state 
energies of two-electron atoms with less algebra and 
inexpensive computer calculations. 
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