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 Abstract: Coronavirus disease (COVID-19) is a pandemic burdening the global 
economy. It is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). Black cumin (Nigella sativa) seed may contain antivirals for the disease since it was 
reported to inhibit the human immunodeficiency virus (HIV) and hepatitis C virus 
(HCV). Main protease (Mpro) is a vital protein for viral replication and a promising target 
for COVID-19 drug development. Hence, in this study, we intended to uncover the 
potency of N. sativa seed as the natural source of inhibitors for SARS-CoV-2 Mpro. We 
collected secondary metabolites in N. sativa seed through a literature search and 
employed Lipinski’s rule of five as the initial filter. Subsequently, virtual screening 
campaigns using a molecular docking method were performed, with N3 inhibitor and 
leupeptin as reference ligands. The top hits were analyzed further using a molecular 
dynamics simulation approach. Molecular dynamics simulations showed that binding 
affinities of nigellamine A2 and A3 to Mpro are comparable to that of leupeptin, with 
median values of -43.9 and -36.2 kcal mol–1, respectively. Ultimately, this study provides 
scientific information regarding N. sativa seeds’ potency against COVID-19 and helps 
direct further wet experiments. 

Keywords: antivirals; Mpro; Nigella sativa seeds; secondary metabolites; virtual screening 

 
■ INTRODUCTION 

On December 31, 2019, the China World Health 
Organization (WHO) office reported an outbreak of 
pneumonia-like cases of unexplained etiology in Wuhan 
[1]. Later on, Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) was identified as the 
causing agent of such a disease, which are then known as 
Coronavirus Disease (COVID-19) [2]. The disease 
quickly spreads around the globe, and on March 11, 2020, 
WHO announced the pandemic of COVID-19 [3]. To 
slow the massive spread of COVID-19 many countries 
implement social distancing, work from home, and 
lockdown. Nowadays, vaccines have been discovered and 
administered to many people around the world [4]. 
However, the COVID-19 pandemic is still growing in 
many countries and burdens the global economy. By May 

16, 2021, COVID-19 has reached 163,188,527 cases and 
caused 3,383,853 deaths worldwide [5]. 

Antivirals to cure COVID-19 are an urgent need. 
One promising inhibition target for SARS-CoV-2 
antiviral is the main protease, hereafter called Mpro. It 
plays a crucial role in cleaving eleven sites on two viral 
polyproteins (pp1a and pp1ab). The cleavage produces 
smaller functional viral proteins. Therefore, Mpro 
inhibition will prevent the formation of virions. 
Furthermore, since the human proteases do not share 
the same cleavage specificity with Mpro, inhibiting the 
viral enzyme would be safe for humans [6]. 

Black cumin (Nigella sativa) seed has long been 
applied as a folk medicine in Arabian countries, Africa, 
Europe, and Far East Asia. According to the Prophet 
Muhammad (PBUH), N. sativa seed has curative 
properties for all illnesses. Moreover, the Bible addresses 
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the healing properties of N. sativa seed [7]. This herbal 
also has been investigated intensively for its bioactivities, 
such as anti-inflammatory, antioxidant, anticancer, 
antifungal, antibacterial, and antiviral [8]. The antiviral 
properties of the N. sativa seed have been reported against 
cytomegalovirus, hepatitis C virus (HCV), and human 
immunodeficiency virus (HIV) [7]. Interestingly, in 
COVID-19 patients, the mixture of honey and N. sativa 
seed substantially improved viral clearance and 
symptoms, leading to reduced mortality [9]. Therefore, N. 
sativa seed may possess antiviral property against SARS-
CoV-2, targeting the Mpro. 

Many secondary metabolites in N. sativa seed have 
been elucidated and published in peer-reviewed journals 
[7-8,10-15]. The data benefits in silico approach as a rapid 
method to investigate N. sativa seed's potency in 
inhibiting Mpro. In silico approach allows us to screen the 
secondary metabolites against Mpro without synthesizing 
the compounds [16]. Several in silico investigations have 
been reported regarding the potency of N. sativa seed as 
the natural source of COVID-19 antivirals [17-21]. Khan 
and his co-workers [17] performed a molecular docking 
study on seven secondary metabolites in N. Sativa seed. 
These are stigmasterol glucoside, α-hederin, nigellidine, 
nigellidine-4-O-sulfite, sterol-3-β-D-glucoside, β-
sitosterol, and dithymoquinone. Their study suggested 
that α-hederin is the strongest ligand binding to Mpro. 
Similarly, Bouchentouf and Missoum [18] proposed α-
hederin and nigellidine as the best potential inhibitors for 
Mpro from their molecular docking study of nine 
secondary metabolites in N. sativa seed. In a separate 
molecular docking study of four secondary metabolites to 
Mpro, Maiti and colleagues [19] also suggested nigellidine 
as the most potent inhibitor. Based on their molecular 
docking study of three secondary metabolites in N. sativa 
seed, Sumaryada and Pramudita also proposed nigellidine 
as the best inhibitor against Mpro [20]. Meanwhile, using a 
more extensive data set of 24 secondary metabolites in 
their molecular docking study, Ferdian and his co-workers 
found 3-[(4-methylphenyl)sulfanyl]-1,3-diphenyl-1-
propanone as the best potential inhibitor against Mpro [21]. 

The molecular docking approach has some 
limitations [22]. This computational method applies a 

rigid receptor and a ligand with fixed bond lengths and 
angles to decrease conformational space. Additionally, 
molecular docking simplifies a scoring function for 
rapid pose evaluation. Hence, another method, such as 
molecular dynamics (MD) simulation, should be 
implemented after the molecular docking step to obtain 
a more accurate prediction of energy and conformation. 
MD simulations have been employed in many studies of 
protein-ligand interactions [23-25]. 

In this present study, we employed a larger data set 
of secondary metabolites than the previous studies [16-
20] to discover the potency of N. sativa seed as the source 
of Mpro inhibitors. Initially, Lipinski’s rule of five [26] 
was implemented to filter the secondary metabolites as 
oral drugs. Subsequently, we virtually screen the 
secondary metabolites through molecular docking using 
Autodock Vina [22]. The best hits were further subjected 
to molecular dynamics simulation to obtain more 
realistic binding affinity scores and more understanding 
regarding the structural dynamics of Mpro after ligand 
binding. This study is valuable to reveal N. sativa seeds’ 
potency against COVID-19 and guide further wet 
laboratory experiments. 

■ EXPERIMENTAL SECTION 

Secondary Metabolite Structure Preparation 

Secondary metabolites in N. sativa seeds were 
collected from literature searches using PubMed 
(https://pubmed.ncbi.nlm.nih.gov/) and Google Scholar 
(https://scholar.google.com/). The 2D structures of 
secondary metabolites were manually drawn using 
BIOVIA Draw Version 19.1 NET 64 bit (https:// 
discover.3ds.com/biovia-draw-academic) or retrieved 
from PubChem (https://pubchem.ncbi.nlm.nih.gov). 
The predictions of Ro5 were performed on the 
webserver of SwissADME (http://www.swissadme.ch). 
Protonation states of the secondary metabolites at 
physiological pH (7.4) were predicted using 
MarvinView 18.21.0 (https://chemaxon.com/products/ 
marvin). The conversion of 2D to 3D structures was 
performed using BIOVIA Discovery Studio 2019 
Visualizer (https://www.3dsbiovia.com). Subsequently, 
the 3D structures were subjected to a geometry 
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optimization stage using a semi-empirical method of 
Parameter Model 6 (PM6) in Gaussian09 [27]. 

Molecular Docking and Virtual Screening 
Campaigns 

The 3D structures of Mpro (PDB ID 6LU7) were 
prepared BIOVIA Discovery Studio 2019 Visualizer by 
separating the respective ligands and discarding ions and 
water molecules. Additionally, a DockPrep module in 
Chimera 1.14rc (https://www.cgl.ucsf.edu/chimera/) was 
employed to remove alternate conformers in the 3D 
structure of Mpro. The apo form of Mpro and the ligand, N3, 
were saved as separated pdb files. An additional Mpro 
ligand, leupeptin, was prepared from its crystal structure 
(6XCH) and utilized as the second reference. All pdb files, 
including secondary metabolites, were converted into 
pdbqt using AutoDockTools-1.5.6 (http://autodock. 
scripps.edu/resources/adt). Autodock Vina was utilized 
to perform molecular docking since its default method 
was well tested and highly optimized [22]. Molecular 
docking validation was conducted by redocking the 
crystal structures of Mpro-N3 (PDB ID 6LU7) and -leupeptin 
(6XCH). For the virtual screening step, PaDEL-ADV 
(http://padel.nus.edu.sg/software/padeladv/index.html) was 
employed for automatization. All molecular docking 
experiments conducted in this study used the default 
method of Autodock Vina [22]. Firstly, the global search 
exhaustiveness was eight. Secondly, the maximum 
number of docking poses was nine. Thirdly, the best and 
worst binding modes were set to have an energy difference 
up to 3 kcal mol–1. 

Molecular Dynamics Simulation 

To identify potential inhibitors of MPro, previous 
studies [17-21] used the molecular docking approach, 
which might be insufficient since the method has some 
limitations [22]. Therefore, the current study employed 
MD for such a purpose. MD simulations were performed 
on Ubuntu 20.04.2.0 LTS computer with Intel Xeon® CPU 
E5-2678 v3 @2.5 GHz × 24, GPU NVIDIA Ge Force RTX 
2080Ti 6 GB, and 16 GB of RAM. The MD simulation 
procedure was adapted from our previous research [25]. 
Briefly, we calculated partial charges of secondary 
metabolite molecules by using the Austin Model 1 - Bond 

Charge Corrections (AM1-BCC) protocol in the 
antechamber program (AmberTools20) [28] 
(https://ambermd.org/AmberTools.php). The other 
parameters for the secondary metabolites were derived 
from Generalized Amber Force Fields 2 (GAFF2) [28]. 
For all MD simulations, ff14SB [29] was assigned to 
amino acid residues of Mpro. Every Mpro and secondary 
metabolite complex system was prepared using the tleap 
program (AmberTools20). In the MD preparation step, 
we used the explicit water model of SPC/E to solvate 
each complex of the Mpro-ligand complex. We set the 
boundary box to 10 Å. Using the tleap program in 
AmberTools20, a few Na+ and Cl- ions were added to 
accomplish a physiological salt concentration of 0.15 M. 

We employed GPU-accelerated Particle-Mesh 
Ewald Molecular Dynamics (PMEMD) and periodic 
boundary conditions, as implemented in Amber20 [28], 
for each protein-ligand complex. Initially, we performed 
two sequential steps of energy minimization. In the first 
step, the protein-ligand complex was restrained by 25 
kcal mol–1 Å–2. In the following step, a restraint of 5 kcal 
mol–1 Å–2 was applied. Under a 50-ps NVT condition, the 
system temperature was raised to 300 K. The system was 
switched to an NPT simulation, and the density was 
adjusted to 1 g cm–1 over 50 ps. In the following 
simulations of the NVT condition, the solute's restraint 
was gradually reduced every 50 ps by 1 kcal mol–1 Å–2 
until it was removed entirely. 

To acquire a 100-ns MD trajectory for every 
system, we simulated each system at 300 K under the 
NPT condition. Particle-mesh Ewald (PME) method 
was employed to treat long-range electrostatic 
interactions, whereas, for short-range non-bonded 
interactions, we used a 10 Å cut-off. By using a SHAKE 
algorithm, we constrained all bonds involving hydrogen 
atoms. Constant temperature and pressure of each 
system were maintained by Langevin thermostat and 
Berendsen barostat, respectively. 

Binding Energy Calculation 

We utilized the Molecular Mechanics Generalized 
Born Surface Area (MMGBSA) method, which is 
implemented in MMPBSA.py (AmberTools20), to 
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estimate binding energy values between ligands and Mpro. 
The MMGBSA binding free energy (ΔG°MMGBSA) is 
calculated as follows in Eq. (1): 

MMGBSA com rec ligi i i
G G G G°∆ = − −  (1) 

where ⟨Gcom⟩i, ⟨Grec⟩i, and ⟨Glig⟩i denote the average energy 
value for complex, enzyme, and ligand, respectively. The 
breakdown of every Gx is as follow in Eq. (2): 

GB SA
x MM solv solvG E G G = + +  (2) 

where EMM is the gas phase energy, GGB
solv is the 

electrostatic contribution to the solvation energy 
determined using the Generalized Born (GB) implicit 
solvent model, and GSA

solv is the hydrophobic portion of 
the solvation energy. The hydrophobic portion is 
computed by the Linear Combination of Pairwise Overlaps 
(LCPO) method. EMM consists of internal energy terms, 
van der Waals (EvdW), and electrostatic interactions (Eel). 
The internal energy terms constitute angle (Eangle), bond 
(Ebond), and torsion energies (Etorsion). Since we single-
trajectory MD simulations, internal energy terms were 
excluded [25]. 

MD Trajectory Analysis 

We utilized cpptraj program in AmberTools20 to 
analyze MD trajectories. The analysis includes 
computation of Root-Mean-Square Fluctuation (RMSF), 
Root-Mean-Square Deviation (RMSD), and H-bond 
conservation. All plots were produced by using a plotnine 
Python library (https://plotnine.readthedocs.io/en/stable/#). 
Statistical significance tests were computed by using R 
(https://cran.r-project.org/) and RStudio 
(https://www.rstudio.com/). 

■ RESULTS AND DISCUSSION 

Data Collection and Lipinski’s Rule of Five 

Several 67 secondary metabolites in N. sativa seed 
were curated from the literature [7,8,10–13] and tabulated 
in Table S1. This number of secondary metabolites is 
larger than the similar works previously reported [17-21]. 
The secondary metabolites consist of seventeen 
monoterpenoids, one diterpenoid, two sesquiterpenoids, 
six phenylpropanoids, three vitamin E compounds, ten 
phytosterols, eight triterpenoids, three saponins, three 
flavonols, and fourteen alkaloids. The two-dimensional 

(2D) structures of these secondary metabolites were 
retrieved from PubChem or sketched using BIOVIA 
Draw Version 19.1 NET 64 bit. 

As the initial screening, we used the SwissADME 
web server [30] to apply Lipinski’s rule of five (Ro5) to 
all secondary metabolites. Ro5 helped to define the 
probability of the secondary metabolites as oral drugs 
through simple physicochemical properties [26]. The 
first rule is that molecular weight is not greater than 500 g 
mol–1 (MW ≤ 500). The second rule is the calculated 
LogP not greater than 5 (CLogP ≤ 5) or Moriguchi LogP 
not over than 4.15 (MLogP ≤ 4.15). The third rule is that 
the number of hydrogen-bond donors is not greater 
than 5 (H-bond donors ≤ 5). The fourth rule is that the 
number of H-bond acceptors is not greater than 10 (H-
bond acceptors ≤ 10). Of 67 secondary metabolites, eight 
compounds were excluded since they violated more than 
one criteria of Ro5 (Table S2) [26]. They are nigellamine 
A1, nigellamine B1, nigellamine B2, α-hederin, 3-O-[β-D-
xylopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-β-D-
glucopyranosyl]-11-methoxy-16,23-dihydroxy-28-methyl 
olean-12-enoate, quercetin 3-(6''''-feruloylglucosyl)-
(1→2)-galactosyl-(1→2)-glucoside, quercetin 3-glucosyl-
(1→2)-galactosyl-(1→2)-glucoside, and kaempferol 3-
glucosyl-(1→2)-galactosyl-(1→2)-glucoside. Interestingly, 
α-hederin, which is suggested by some studies [17-18] as 
the potential secondary metabolite, violates three rules 
of Ro5 (Table S2). It has an MW of 750.96 g mol–1, seven 
H-bond donors, and 12 H-bond acceptors. Therefore, α-
hederin may not be active as an oral drug. 

Secondary metabolite structure preparation 
The protonation state of a chemical structure, 

which is contributed by any titratable functional group, 
depends on environmental pH [24]. Meanwhile, the 
correct assignment of protonation state has a crucial role 
in producing meaningful studies of molecular docking 
[31] and dynamics simulation [24]. Thus, we predicted 
charge states of secondary metabolites in N. sativa seeds 
at physiological pH (7.4) using MarvinView 18.21.0. 
This program successfully assisted our previous study 
[24] in assigning correct protonation states of chemical 
structures. In the present study, the program generated 
the predictions of major microspecies (data not shown) 
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and charge states of all secondary metabolites (Table S1). 
We assigned hydrogen atoms carefully during the 2D to 
3D conversions of the secondary metabolite structures 
based on these prediction data. 

The geometry optimization of ligand structures is an 
essential step in molecular docking since it significantly 
improves the binding energy values of the resulting poses 
[32]. Hence before conducting molecular docking, we 
optimized the geometry of all 3D structures using a semi-
empirical method of Parameter Model 6 (PM6) in 
Gaussian09. This semi-empirical approach is accurate in 
reproducing geometries of simple organic crystals and 
small molecules [33]. Representative secondary 
metabolite structures optimized by the use of the PM6 
method are depicted in Fig. S1. 

Virtual screening campaigns 
Employing the molecular docking approach as a 

virtual screening tool, we continued to explore N. sativa 
seeds' potency in inhibiting Mpro. We used the crystal 
structures with PDB ID 6LU7, which contains N3 
inhibitor and Mpro [34]. Beforehand, the redocking 
procedure was conducted on the complex of Mpro and N3 
as a validation step. The redocking procedure ensures the 
stochastic search method of molecular docking finding a 
global minimum [22]. The redocking result with a low 
RMSD of 1.50 Å (Fig. S2) was achieved by using a grid box 
size of 20 × 28 × 18 and spacing 1 Å. Such a redocking 
result suggested that N3 binds to Mpro with a -9.1 kcal/mol 
binding energy score. 

Additionally, we used leupeptin as another reference 
ligand, where its complex with Mpro is available as a crystal 
structure with PBD ID 6XCH. Leupeptin is a natural 

protease inhibitor that has inhibition activities to the 
main proteases of SARS-CoV [35] and SARS-CoV-2 [6]. 
Redocking of leupeptin to Mpro gave the best hit with an 
RMSD of 1.47 Å (Fig. S2) and a binding energy score of 
7.6 kcal mol-1. These redocking results reflect the 
agreement between in silico and experiment studies, 
where the inhibition activity of N3 [34] is higher than 
that of leupeptin [35]. The use of N3 and leupeptin as the 
reference ligands allows a depiction of binding affinity 
levels of secondary metabolites in N. sativa seeds against 
Mpro. 

In the subsequent step, the 59 secondary 
metabolites in N. sativa seeds were subjected to virtual 
screening against Mpro. The results suggested that all 
secondary metabolites bind to Mpro weaker than N3 
(Table S3). Nevertheless, six secondary metabolites exhibit 
binding energy scores stronger than that of leupeptin 
(Table 1). They are nigellidine-4-O-sulfite, taraxerol, 
nigellidine, nigellamine A2, nigellamine A3, and 
melanthigenin. Therefore, these six secondary metabolites 
are considered as the potential ligands inhibiting Mpro. 

Most molecular docking methods, such as using 
Autodock Vina, implement fixed bond angles and a rigid 
receptor to reduce conformational space. Moreover, at 
every conformational search, the methods use a 
simplified scoring function for rapid energy evaluation. 
These limitations require further refinement methods, 
like molecular dynamics simulation, to achieve more 
realistic energy prediction and conformational search 
[22]. Hence, we subjected the seven secondary 
metabolites bound to Mpro, as listed in Table 1, to 
molecular dynamics simulation. 

Table 1. Binding energy values of reference ligands and potential Mpro inhibitor candidates from N. sativa seeds 
Ligand Binding Energy (kcal mol–1) Information 
N3 -9.1 Reference ligand 
Nigellidine-4-O-sulfite -8.2 Secondary metabolites from N. sativa seeds 
Taraxerol -7.8 Secondary metabolites from N. sativa seeds 
Nigellidine  -7.8 Secondary metabolites from N. sativa seeds 
Nigellamine A2 -7.7 Secondary metabolites from N. sativa seeds 
Nigellamine A3 -7.7 Secondary metabolites from N. sativa seeds 
Melanthigenin -7.7 Secondary metabolites from N. sativa seeds 
Leupeptin -7.6 Reference ligand 

*The binding energy values were resulted of molecular docking procedure using AutoDock Vina 
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Binding Affinity Refinement Using Molecular 
Dynamics Simulation 

We performed MD simulations for all complex of 
ligands (Table 1) bound to Mpro to yield a 100-ns 
trajectory. Subsequently, we computed ΔG°MMGBSA every 
10 ns and visualized the resulting values from each 
trajectory, as shown in Fig. S3. Additionally, we calculated 
the descriptive statistics (Table 2) and created the Box-
plot (Fig. 1). The ΔG°MMGBSA results are considerably 
different from binding energy scores obtained from 
molecular docking (Table 1) and, thus, re-rank the 
ligands’ order in terms of binding affinities. While the N3 
inhibitor maintains its ranking as the most potent ligand 
for Mpro, leupeptine exhibits a stronger ΔG°MMGBSA value 
than all secondary metabolites, except nigellamine A2. 
Nigellidine, taraxerol, and nigellidine-4-O-sulfite are far 
weaker than leupeptin in binding to Mpro. Meanwhile, 
ΔG°MMGBSA value of A3 is quite similar to that of leupeptin. 

We utilized inferential statistics approaches to 
evaluate the significant difference among values and of 
leupeptin, nigellamine A2, nigellamine A3, and 
melanthigenin. In advance, we checked assumptions for 
the parametric method, analysis of variance (ANOVA). 
The data is normally distributed, according to the Shapiro 
test (p-value = 9.34 × 10–2; α = 5%), but lack variance 
homogeneity (p-value = 2.33 × 10–3). Thus, we run a non-
parametric significance test, Kruskal-Wallis rank-sum 

test. The test was followed by Dunn’s multiple 
comparison test with the Bonferroni method as the post 
hoc test. The test (Supporting Information: Note) 
suggested that there is no statistical difference among 
ΔG°MMGBSA values of leupeptin, nigellamine A2, and 
nigellamine A3. Therefore, nigellamine A2 and A3 are 
potential candidates as Mpro inhibitors, particularly the 
first compound. 

The Influence of Ligand Binding on the Structural 
Dynamics of Mpro 

The binding of every ligand to Mpro affects 
differently on the structural dynamics of the protein. 
Ligands with weak binding affinities tend to increase 
conformational changes of Mpro (Fig. S4: top panels). 
Nigellidine-4-O-sulfite, taraxerol, and nigellidine cause 
the increase of conformational changes on Mpro 
structure. The increase also occurs due to the binding of 
melanthigenin, nigellamine A2, and nigellamine A3 to 
Mpro (Fig. 2 and Fig. S4). Nevertheless, some ligands, 
including taraxerol, nigellidine, and melanthigenin, 
show low conformational changes when binding to Mpro 
(Fig. S4: lower panels). 

As the reference ligand, the binding of leupeptin to 
Mpro causes a low conformational change on the protein, 
particularly after 25 ns (Fig. 2). Such binding also shows 
a relatively stable trajectory of ΔG°MMGBSA values, around  

 
Fig 1. Box-plot of ΔG°MMGBSA values of several ligands binding to Mpro. The ligands include N3 inhibitor, leupeptin 
(LPT), and secondary metabolites in N. sativa seeds. These secondary metabolites are nigellamine A2 (NA2), 
nigellamine A3 (NA3), melanthigenin (MTN), nigellidine-4-O-sulfite (NGS), taraxerol (TRX), and nigellidine (NGL) 
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Fig 2. RMSD plots of Mpro in apo and ligand-bound forms. The ligands are N3 inhibitor, leupeptin (LPT), and 
secondary metabolites in N. sativa seeds, including nigellamine A2 (NA2), and A3 (NA3) 
 
-40 kcal mol–1 (Fig. S3). In contrast, the binding of N3 
results in a fluctuation in the protein RMSD, where the 
ΔG°MMGBSA trajectory of the ligand exhibits a dramatic 
change to become weaker, about -30 kcal mol–1 (Fig. S3). 
Meanwhile, the secondary nigellamine A2, which displays 
a slightly stronger binding affinity than leupeptin to Mpro, 
stabilizes the protein conformation, as shown with a low 
RMSD fluctuation after 40 ns. During the first 40-ns, the 
binding of nigellamine A2 to Mpro experiences a strengthen. 
But then it weakens to around -40 kcal mol–1 after 50 ns 
and remains until the end of the trajectory (Fig. S3). 

Besides RMSD, we also computed the RMSF for the 
ligand-bound forms of Mpro (Fig. 3 and Fig. S5). RMSF 
complements RMSD in providing detailed information 
regarding conformation changes of Mpro. The ligand 
binding primarily fluctuates Met49, Leu50, Pro52, Tyr54, 
Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, 

Gly146, Val186, Asp187, Arg188, Gln189, Thr190, 
Ala191, and Gln192. They are residues forming the 
binding site of Mpro. 

The binding of reference ligands mainly lowers the 
conformational changes of Mpro. The N3 inhibitor 
reduces the fluctuation of Pro52, Tyr54, and Glu55, but 
it increases the conformational changes on Glu47, 
Asp48, Met49, and Leu50 as compensation. 
Additionally, such binding also decreases the fluctuation 
of Phe140, Leu141, Asn142, Gly143, Ser144, and Cys145. 
The binding of leupeptin causes a slight increase of 
fluctuation around Asn142, Gly143, Ser144, Cys145, 
Gly146. 

Two secondary metabolites with similar ΔG°MMGBSA 
values to leupeptin, nigellamine A2, and A3, affect 
differently on the fluctuation of Mpro. While nigellamine 
A3 increases the  conformational changes of  amino acid  

 
Fig 3. RMSF plots of Mpro in apo and ligand-bound forms. The ligands are N3 inhibitor, leupeptin (LPT), and 
secondary metabolites in N. sativa seeds, including nigellamine A2 (NA2) and A3 (NA3). The binding residues of Mpro 
are shaded by grey color 
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Table 2. Non-bonded Interactions between Mpro and ligands before and after MD simulations. For MD simulations, 
the non-bonded interactions were extracted from the last frame of the MD trajectories 

Interaction 
LPT N3 NA2 NA3 

D* MD^ D MD D MD D MD 
H-bond 5 4 4 7 2 1 4 1 
Unconventional H-bond 5 5 6 9 5 3 1 1 
Alkyl 2  2 2  6 2 1 
Pi-Alkyl 1 1 3 1 2 1 3 2 
Pi-Pi     1 1  1 
Amide-Pi      1   
Pi-sulphur  1    1   
Unfavorable 2  2      

*D: molecular docking 
^MD: molecular dynamics simulation 

 
residues at the binding site of Mpro, nigellamine A2 
reduces the fluctuation of the protein entirely. Such 
influence of nigellamine A2 on protein structural 
dynamics suggests that the compound is the most potent 
antiviral for COVID-19 among other secondary 
metabolites in N. sativa seeds, targeting Mpro. 

Non-Bonded Interactions between Mpro and 
Ligands 

As discussed above, the order of ligand binding 
affinity to Mpro alters from molecular docking (Table 1) to 
MD simulation results (Fig. 1). Unlike molecular docking, 
MD simulations allow ligands and Mpro to move and 
interplay, adjusting their intermolecular interactions 
[23,25]. According to molecular docking results, N3 and 
leupeptin display two unfavorable interactions with Mpro 
(Table 2, Fig. S6). After MD simulations, these 
interactions disappear, and N3 increases its 
intermolecular H-bond, while leupeptin decreases such 
interaction with Mpro. Nigellamine A3 experiences some 
reductions regarding intermolecular interactions with 
Mpro (Table 2), which may explain the decrease of its 
binding affinity to Mpro during MD trajectory. Meanwhile, 
nigellamine A2 reduces conventional and unconventional 
H-bonds, the ligand creates new non-bonded interactions 
of six alkyl-alkyl, one amide-Pi, and one Pi-sulphur (Table 
2). These various interactions of nigellamine A2 to Mpro 
may describe the comparable binding of the ligand and  
 

 

leupeptin to the enzyme. 

■ CONCLUSION 

In this study, we have explored the potency of N. 
sativa seed in inhibiting Mpro, based on virtual screening 
campaigns of 67 secondary metabolites. In the beginning, 
the secondary metabolites in N. sativa seeds were filtered 
using Lipinski's rule of five, which defines their 
probabilities as oral drugs. The filtered secondary 
metabolites were subjected to virtual screening campaigns 
using a molecular docking approach. Using N3 and 
leupeptin as the reference ligands, the virtual screening 
stage screened seven secondary metabolites as inhibitor 
candidates targeting Mpro. Further binding energy 
refinement, i.e., ΔG°MMGBSA, using a molecular dynamics 
method suggested three secondary metabolites as the 
potential inhibitor candidates. They are nigellamine A2 
and A3. With ΔG°MMGBSA, RMSD, and RMSF data, this 
study suggests nigellamine A2 as the most potent 
inhibitor candidate for inhibiting Mpro. This study's results 
are beneficial in uncover the potency N. sativa seed, 
combating COVID-19, and assist further wet laboratory 
experiments. Furthermore, secondary metabolites in N. 
sativa seed may have potential inhibition activities 
against other functional proteins in SARS-CoV-2, such 
as RNA-dependent RNA polymerase (RdRp) and non-
structural protein 16/10 (NSP16/10). Therefore, other 
investigations can be directed to these proteins. 
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