### **Supplementary Data**

This supplementary data is a part of paper entitled "Exploring the Potency of *Nigella sativa* seed in Inhibiting SARS-CoV-2 Main Protease Using Molecular Docking and Molecular Dynamics Simulations".

No. Secondary Metabolites 2D Structure Charge\* Ref. Monoterpenoid hydrocarbons α-Thujene α-Pinene Sabinene β-Pinene Myrcene α-Phellandrene *p*-Cymene Limonene y-Terpinene Monoterpenoid ketones Fenchone Dihydrocarvone Carvone Thymoquinone Monoterpenoid alcoholss α-Terpineol *p*-Cymene-8-ol 

**Table S1.** Secondary metabolites in *Nigella sativa* seeds curated from the literature [1-8]

| No. | Secondary Metabolites         | 2D Structure | Charge* | Ref. |
|-----|-------------------------------|--------------|---------|------|
| 16  | Carvacrol                     |              | 0       | 2    |
| 17  | Thymol                        |              | 0       | 3    |
|     | Diterpenoids                  |              |         |      |
| 18  | Dithymoquinone                |              | 0       | 2    |
|     | Sesquiterpenoid hydrocarbones |              |         |      |
| 19  | α-Longipinene                 |              | 0       | 1    |
| 20  | Longifolene                   |              | 0       | 1    |
|     | Phenyl propanoid compounds    |              |         |      |
| 21  | Estragole                     | <u>`</u>     | 0       | 1    |
| 22  | Anisaldehyde                  |              | 0       | 1    |
| 23  | trans-Anethole                |              | 0       | 2    |
| 24  | Myristicin                    |              | 0       | 1    |
| 25  | Dillapiole                    |              | 0       | 1    |
| 26  | Apiole                        |              | 0       | 1    |
|     | Vitamin E                     |              |         |      |
| 27  | α-Tocopherol                  |              | 0       | 3    |
| 28  | γ-Tocopherol                  |              | 0       | 3    |

 Table S1. Secondary metabolites in Nigella sativa seeds curated from the literature [1-8] (Continued)

 No. 1 - No. 1 -

| No. | Secondary Metabolites | 2D Structure  | Charge* | Ref. |
|-----|-----------------------|---------------|---------|------|
| 29  | $\beta$ -Tocotrienol  | Li<br>Xidadad | 0       | 3    |
|     | Phytosterols          |               |         |      |
| 30  | Avenasterol-5-ene     |               | 0       | 4    |
| 31  | Avenasterol-7-ene     |               | 0       | 4    |
| 32  | Campesterol           |               | 0       | 4    |
| 33  | Citrostadienol        |               | 0       | 4    |
| 34  | $\beta$ -sitosterol   |               | 0       | 3    |
| 35  | Cycloartenol          |               | 0       | 4    |
| 36  | Stigmastanol          |               | 0       | 4    |
| 38  | Gramisterol           |               | 0       | 4    |
| 37  | Lophenol              |               | 0       | 4    |

 Table S1. Secondary metabolites in Nigella sativa seeds curated from the literature [1-8] (Continued)

| No. | Secondary Metabolites                                                                                                                                                                          | 2D Structure | Charge* | Ref. |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------|
| 38  | Lophenol                                                                                                                                                                                       |              | 0       | 4    |
| 39  | Obtusifoliol                                                                                                                                                                                   |              | 0       | 4    |
|     | Saponin                                                                                                                                                                                        |              |         |      |
| 40  | α-Hederin                                                                                                                                                                                      |              | -1      | 2    |
| 41  | 3-O-[ $\beta$ -D-xylopyranosyl-(1 $\rightarrow$ 2)-<br>alpha-L-rhamnopyranosyl-(1 $\rightarrow$ 2)-<br>$\beta$ -D-glucopyranosyl]-11-methoxy-<br>16,23-dihydroxy-28-methyl olean-<br>12-enoate |              | 0       | 5    |
| 42  | Stigma-5,22-dien-3-β-D-<br>glucopyranoside                                                                                                                                                     |              | 0       | 5    |
|     | Triterpenoids                                                                                                                                                                                  |              |         |      |
| 43  | Cycloeucalenol                                                                                                                                                                                 |              | 0       | 4    |
| 44  | eta-amyrin                                                                                                                                                                                     |              | 0       | 4    |
| 45  | Butyrospermol                                                                                                                                                                                  |              | 0       | 4    |
| 46  | Cycloart-23-methyl-7,20,22-<br>triene-3 $\beta$ ,25-diol                                                                                                                                       |              | 0       | 5    |

 Table S1. Secondary metabolites in Nigella sativa seeds curated from the literature [1-8] (Continued)

| No. | Secondary Metabolites                                                   | 2D Structure | Charge* | Ref. |
|-----|-------------------------------------------------------------------------|--------------|---------|------|
| 47  | Melanthigenin                                                           |              | -1      | 4    |
| 48  | 24-Methylene-cycloartanol                                               |              | 0       | 4    |
| 49  | Taraxerol                                                               |              | 0       | 4    |
| 50  | Tirucallol                                                              |              | 0       | 4    |
|     | Flavonols                                                               |              |         |      |
| 51  | Quercetin 3-glucosyl-(1→2)-<br>galactosyl-(1→2)-glucoside               |              | -1      | 6    |
| 52  | Quercetin 3-(6""-feruloylglucosyl)-<br>(1→2)-galactosyl-(1→2)-glucoside |              | -1      | 6    |
| 53  | Kaempferol 3-glucosyl-(1→2)-<br>galactosyl-(1→2)-glucoside              |              | -1      | 6    |
|     | Alkaloids                                                               |              |         |      |
| 54  | Nigeglanine                                                             |              | 0       | 7    |

 Table S1. Secondary metabolites in Nigella sativa seeds curated from the literature [1-8] (Continued)

| No. | Secondary Metabolites | 2D Structure                              | Charge* | Ref. |
|-----|-----------------------|-------------------------------------------|---------|------|
| 55  | Nigellamine A1        |                                           | 0       | 2    |
| 56  | Nigellamine A2        |                                           | 0       | 2    |
| 57  | Nigellamine A3        |                                           | 0       | 2    |
| 58  | Nigellamine A4        |                                           | 0       | 2    |
| 59  | Nigellamine A5        |                                           | 0       | 2    |
| 60  | Nigellamine B1        |                                           | -1      | 8    |
| 61  | Nigellamine B2        |                                           | -1      | 8    |
| 62  | Nigellamine C         |                                           | 0       | 2    |
| 63  | Nigellidine           | H <sub>B</sub> C<br>N<br>O<br>O<br>O<br>O | -1      | 2    |

 Table S1. Secondary metabolites in Nigella sativa seeds curated from the literature [1-8] (Continued)

| No. | Secondary Metabolites   | 2D Structure                                                                                                                                                 | Charge* | Ref. |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| 64  | Nigellicimine           |                                                                                                                                                              | 0       | 2    |
| 65  | Nigellicimine-N-oxide   |                                                                                                                                                              | 0       | 2    |
| 66  | Nigellicine             | H <sub>1</sub> C<br>H <sub>1</sub> C | -1      | 2    |
| 67  | Nigellidine-4-O-sulfite |                                                                                                                                                              | 0       | 4    |

 Table S1. Secondary metabolites in Nigella sativa seeds curated from the literature [1-8] (Continued)

| Table | e S2. Lipinski's rule of | ive results for | secondary 1 | metabolites in <i>l</i> | V. <i>sativa</i> seeds |
|-------|--------------------------|-----------------|-------------|-------------------------|------------------------|
|       |                          |                 |             |                         |                        |

|       |                          |         | _      | Lipinski's Rule | of Five  |                          |
|-------|--------------------------|---------|--------|-----------------|----------|--------------------------|
| No.   | Secondary Metabolites    | MW      | MlagD  | H-bond          | H-bond   | $\mathbf{V}$ : -1-+: (-) |
|       |                          | (g/mol) | MilogP | Acceptor(s)     | Donor(s) | v iolation(s)            |
| Mon   | oterpenoid hydrocarbons  |         |        |                 |          |                          |
| 1     | α-Thujene                | 136.23  | 4.29   | 0               | 0        | 1                        |
| 2     | <i>α</i> -Pinene         | 136.23  | 4.29   | 0               | 0        | 1                        |
| 3     | Sabinene                 | 136.23  | 4.29   | 0               | 0        | 1                        |
| 4     | $\beta$ -Pinene          | 136.23  | 4.29   | 0               | 0        | 1                        |
| 5     | Myrcene                  | 136.23  | 3.56   | 0               | 0        | 0                        |
| 6     | α-Phellandrene           | 136.23  | 3.27   | 0               | 0        | 0                        |
| 7     | <i>p</i> -Cymene         | 134.22  | 4.47   | 0               | 0        | 1                        |
| 8     | Limonene                 | 136.23  | 3.27   | 0               | 0        | 0                        |
| 9     | <i>y</i> -Terpinene      | 136.23  | 3.27   | 0               | 0        | 0                        |
| Mon   | oterpenoid ketones       |         |        |                 |          |                          |
| 10    | Fenchone                 | 152.23  | 2.30   | 1               | 0        | 0                        |
| 11    | Dihydrocarvone           | 152.23  | 2.20   | 1               | 0        | 0                        |
| 12    | Carvone                  | 150.22  | 2.10   | 1               | 0        | 0                        |
| 13    | Thymoquinone             | 164.20  | 1.08   | 2               | 0        | 0                        |
| Mon   | oterpenoid alcoholss     |         |        |                 |          |                          |
| 14    | α-Terpineol              | 154.25  | 2.50   | 1               | 1        | 0                        |
| 15    | <i>p</i> -Cymene-8-ol    | 150.22  | 2.11   | 1               | 1        | 0                        |
| 16    | Carvacrol                | 150.22  | 2.82   | 1               | 1        | 0                        |
| 17    | Thymol                   | 150.22  | 2.82   | 1               | 1        | 0                        |
| Diter | penoids                  |         |        |                 |          |                          |
| 18    | Dithymoquinone           | 328.4   | 1.74   | 4               | 0        | 0                        |
| Sesqı | iiterpenoid hydrocarbons |         |        |                 |          |                          |
| 19    | α-Longipinene            | 204.35  | 5.65   | 0               | 0        | 1                        |

|       | 1                                                                                                    | 1       |       | Lipinski's Rule | of Five  | ,            |
|-------|------------------------------------------------------------------------------------------------------|---------|-------|-----------------|----------|--------------|
| No.   | Secondary Metabolites                                                                                | MW      |       | H-bond          | H-bond   |              |
|       | ,                                                                                                    | (g/mol) | MlogP | Acceptor(s)     | Donor(s) | Violation(s) |
| 20    | Longifolene                                                                                          | 204.35  | 5.65  | 0               | 0        | 1            |
| Phen  | vl propanoid compounds                                                                               |         |       | -               |          |              |
| 21    | Estragole                                                                                            | 148.20  | 2.67  | 1               | 0        | 0            |
| 22    | Anisaldehvde                                                                                         | 137.14  | 1.12  | 2               | 0        | 0            |
| 23    | <i>trans</i> -Anethole                                                                               | 148.20  | 2.67  | 1               | 0        | 0            |
| 24    | Myristicin                                                                                           | 192.21  | 1.70  | 3               | 0        | 0            |
| 25    | Dillapiole                                                                                           | 222.24  | 1.40  | 4               | 0        | 0            |
| 26    | Apiole                                                                                               | 222.24  | 1.40  | 4               | 0        | 0            |
| Vitar | nin E                                                                                                |         |       |                 |          |              |
| 27    | α-Tocopherol                                                                                         | 430.71  | 6.14  | 2               | 1        | 1            |
| 28    | v-Tocopherol                                                                                         | 416.68  | 5.94  | 2               | 1        | 1            |
| 29    | β-Tocotrienol                                                                                        | 410.63  | 5.68  | 2               | 1        | 1            |
| Phyte | osterols                                                                                             |         |       |                 |          |              |
| 30    | Avenasterol-5-ene                                                                                    | 412.69  | 6.62  | 1               | 1        | 1            |
| 31    | Avenasterol-7-ene                                                                                    | 412.69  | 6.62  | 1               | 1        | 1            |
| 32    | Campesterol                                                                                          | 400.68  | 6.54  | 1               | 1        | 1            |
| 33    | Citrostadienol                                                                                       | 426.72  | 6.82  | 1               | 1        | 1            |
| 34    | β-sitosterol                                                                                         | 414.71  | 6.73  | 1               | 1        | 1            |
| 35    | Cycloartenol                                                                                         | 426.72  | 6.92  | 1               | 1        | 1            |
| 36    | Stigmastanol                                                                                         | 416.72  | 6.88  | 1               | 1        | 1            |
| 37    | Gramisterol                                                                                          | 412.69  | 6.62  | 1               | 1        | 1            |
| 38    | Lophenol                                                                                             | 400.68  | 6.54  | 1               | 1        | 1            |
| 39    | Obtusifoliol                                                                                         | 426.72  | 6.82  | 1               | 1        | 1            |
| Sapo  | nin                                                                                                  |         |       |                 |          |              |
| 40    | α-Hederin                                                                                            | 750.96  | 1.46  | 12              | 7        | 3            |
| 41    | 3-O-[ $\beta$ -D-xylopyranosyl-(1 $\rightarrow$ 2)-alpha-L-rhamnopyranosyl-                          |         |       |                 |          |              |
|       | $(1 \rightarrow 2)$ - $\beta$ -D-glucopyranosyl]-11-methoxy-16,23-dihydroxy-                         |         |       |                 |          |              |
|       | 28-methyl olean-12-enoate                                                                            | 989.15  | -2.27 | 20              | 10       | 3            |
| 42    | Stigma-5,22-dien-3- $\beta$ -D-glucopyranoside                                                       | 574.83  | 3.85  | 6               | 4        | 1            |
| Trite | rpenoids                                                                                             |         |       |                 |          |              |
| 43    | Cycloeucalenol                                                                                       | 426.72  | 6.92  | 1               | 1        | 1            |
| 44    | β-amyrin                                                                                             | 426.72  | 6.92  | 1               | 1        | 1            |
| 45    | Butyrospermol                                                                                        | 426.72  | 6.82  | 1               | 1        | 1            |
| 46    | Cycloart-23-methyl-7,20,22-triene-3β,25-diol                                                         | 442.72  | 6     | 2               | 2        | 1            |
| 47    | Melanthigenin                                                                                        | 472.70  | 4.97  | 4               | 3        | 1            |
| 48    | 24-Methylene-cycloartanol                                                                            | 440.74  | 7.12  | 1               | 1        | 1            |
| 49    | Taraxerol                                                                                            | 426.72  | 6.92  | 1               | 1        | 1            |
| 50    | Tirucallol                                                                                           | 426.72  | 6.82  | 1               | 1        | 1            |
| Flavo | onols                                                                                                |         |       |                 |          |              |
| 51    | Quercetin 3-glucosyl- $(1\rightarrow 2)$ -galactosyl- $(1\rightarrow 2)$ -glucoside                  | 788.66  | -6.64 | 22              | 14       | 3            |
| 52    | Quercetin 3-(6 <sup>""</sup> -feruloylglucosyl) -(1 $\rightarrow$ 2)-galactosyl-(1 $\rightarrow$ 2)- |         |       |                 |          |              |
|       | glucoside                                                                                            | 964.83  | -6.01 | 25              | 14       | 3            |

**Table S2.** Lipinski's rule of five results for secondary metabolites in *N. sativa* seeds (*Continued*)

|      | Tuble 02. Elphiski s fule of five results for second                                   | ary metabo | filles in iv | . suira secus   | Commune  | •)           |
|------|----------------------------------------------------------------------------------------|------------|--------------|-----------------|----------|--------------|
|      |                                                                                        |            |              | Lipinski's Rule | of Five  |              |
| No.  | Secondary Metabolites                                                                  | MW         | M1D          | H-bond          | H-bond   | $\mathbf{V}$ |
|      |                                                                                        | (g/mol)    | MIOgP        | Acceptor(s)     | Donor(s) | violation(s) |
| 53   | Kaempferol 3-glucosyl- $(1 \rightarrow 2)$ -galactosyl- $(1 \rightarrow 2)$ -glucoside | 772.66     | -6.2         | 21              | 13       | 3            |
| Alka | loids                                                                                  |            |              |                 |          |              |
| 54   | Nigeglanine                                                                            | 202.25     | 1.91         | 1               | 0        | 0            |
| 55   | Nigellamine A1                                                                         | 633.77     | 8.13         | 7               | 0        | 2            |
| 56   | Nigellamine A2                                                                         | 634.76     | 7.52         | 8               | 0        | 1            |
| 57   | Nigellamine A3                                                                         | 628.80     | 7.79         | 8               | 0        | 1            |
| 58   | Nigellamine A4                                                                         | 600.74     | 7.01         | 8               | 0        | 1            |
| 59   | Nigellamine A5                                                                         | 648.79     | 7.45         | 8               | 0        | 1            |
| 60   | Nigellamine B1                                                                         | 679.75     | 6.77         | 10              | 1        | 2            |
| 61   | Nigellamine B2                                                                         | 680.74     | 6.17         | 11              | 1        | 2            |
| 62   | Nigellamine C                                                                          | 530.65     | 6.27         | 7               | 0        | 1            |
| 63   | Nigellidine                                                                            | 294.35     | 3.28         | 2               | 1        | 0            |
| 64   | Nigellicimine                                                                          | 203.24     | 2.56         | 3               | 0        | 0            |
| 65   | Nigellicimine-N-oxide                                                                  | 219.24     | 1.80         | 3               | 0        | 0            |
| 66   | Nigellicine                                                                            | 246.26     | 1.60         | 3               | 1        | 0            |
| 67   | Nigellidine-4-O-sulfite                                                                | 374.41     | 3.32         | 5               | 1        | 0            |

**Table S2.** Lipinski's rule of five results for secondary metabolites in *N. sativa* seeds (*Continued*)

**Table S3.** Binding energy scores of secondary metabolites in *N. sativa* to M<sup>pro</sup>. Binding energy scores were obtained from molecular docking

| No. | Ligand                                          | Affinity/kcal.mol <sup>-1</sup> |
|-----|-------------------------------------------------|---------------------------------|
| 1   | N3                                              | -9.1                            |
| 2   | Nigellidine-4-O-sulfite                         | -8.2                            |
| 3   | Taraxerol                                       | -7.8                            |
| 4   | Nigellidine                                     | -7.8                            |
| 5   | Nigellamine A2                                  | -7.7                            |
| 6   | Nigellamine A3                                  | -7.7                            |
| 7   | Melanthigenin                                   | -7.7                            |
| 8   | Leupeptine                                      | -7.6                            |
| 9   | Nigellamine A5                                  | -7.5                            |
| 10  | Butyro-spermol                                  | -7.5                            |
| 11  | Stigma-5,22-dien-3-beta-D-glucopyranoside       | -7.5                            |
| 12  | $\beta$ -amyrin                                 | -7.4                            |
| 13  | Dithymoquinone                                  | -7.3                            |
| 14  | Nigellamine A4                                  | -7.2                            |
| 15  | $\beta$ -Tocotrienol                            | -7.2                            |
| 16  | Cycloart-23-methyl-7,20,22-triene-3beta,25-diol | -7.2                            |
| 17  | Cycloeucalenol                                  | -7.2                            |
| 18  | Nigellamine C                                   | -7.2                            |
| 19  | Avenasterol-7-ene                               | -7.0                            |
| 20  | Campesterol                                     | -6.8                            |
| 21  | Gramisterol                                     | -6.8                            |
| 22  | 24-Methylene-cycloartanol                       | -6.7                            |

# Suppl. 10

| No. | Ligand                | Affinity/kcal.mol <sup>-1</sup> |
|-----|-----------------------|---------------------------------|
| 23  | Avenasterol-5-ene     | -6.7                            |
| 24  | Tirucallol            | -6.7                            |
| 25  | Nigellicine           | -6.6                            |
| 26  | Cycloartenol          | -6.6                            |
| 27  | $\beta$ -sitosterol   | -6.6                            |
| 28  | Citrostadienol        | -6.5                            |
| 29  | α-Tocopherol          | -6.4                            |
| 30  | Obtusifoliol          | -6.3                            |
| 31  | Stigmastanol          | -6.2                            |
| 32  | Lophenol              | -6.1                            |
| 33  | Nigeglanine           | -5.9                            |
| 34  | Nigellicimine-N-oxide | -5.6                            |
| 35  | Nigellicimine         | -5.5                            |
| 36  | y-Tocopherol          | -5.4                            |
| 37  | Apiole                | -5.4                            |
| 38  | Dillapiol             | -5.4                            |
| 39  | Longifolene           | -5.3                            |
| 40  | Myristicin            | -5.2                            |
| 41  | α-Longipinene         | -5.1                            |
| 42  | Thymoquinone          | -4.9                            |
| 43  | Dihydrocarvone        | -4.9                            |
| 44  | Carvone               | -4.8                            |
| 45  | Carvacrol             | -4.8                            |
| 46  | <i>p</i> -Cymene-8-ol | -4.8                            |
| 47  | α-Phellandrene        | -4.7                            |
| 48  | <i>p</i> -Cymene      | -4.6                            |
| 49  | α-Terpineol           | -4.6                            |
| 50  | Thymol                | -4.6                            |
| 51  | y-Terpinene           | -4.6                            |
| 52  | Sabinene              | -4.6                            |
| 53  | Limonene              | -4.5                            |
| 54  | Trans-anethole        | -4.4                            |
| 55  | Anisaldehyde          | -4.4                            |
| 56  | Estragole             | -4.4                            |
| 57  | α-Pinene              | -4.4                            |
| 58  | Fenchone              | -4.3                            |
| 59  | α-Thujene             | -4.3                            |
| 60  | $\beta$ -Pinene       | -4.2                            |
| 61  | Myrcene               | -4.0                            |

**Table S3.** Binding energy scores of secondary metabolites in *N. sativa* to M<sup>pro</sup>. Binding energy scores were obtained from molecular docking

| No | Ligand                  | $\Delta G^{\circ}_{MMGBSA}/kcal.mol^{-1}$ |        |       |
|----|-------------------------|-------------------------------------------|--------|-------|
|    |                         | Q1                                        | Median | Q3    |
| 1  | N3                      | -64.6                                     | -61.7  | -60.1 |
| 2  | Leupeptin               | -43.96                                    | -41.8  | -40.2 |
| 3  | Nigellamine A2          | -47.6                                     | -43.9  | -42.3 |
| 4  | Nigellamine A3          | -45.7                                     | -36.2  | -32.7 |
| 5  | Melanthigenin           | -34.0                                     | -32.8  | -31.7 |
| 6  | Nigellidine-4-O-sulfite | -29.0                                     | -26.5  | -24.6 |
| 7  | Taraxerol               | -18.8                                     | -16.1  | -14.7 |
| 8  | Nigellidine             | -16.8                                     | -12.9  | -10.6 |

Table S4.  $\Delta G^{\circ}_{\text{MMGBSA}}$  median values of ligands bound to  $M^{\text{pro}}$ 



**Fig S1.** Optimized geometry of the representative secondary metabolites in *N. sativa*. Geometry optimization was performed by using a semiempirical method of PM6



**Fig S2.** Overlaying between crystal and re-docking structures of N3 (a) and leupeptin (b). The RMSD value on the heavy atoms of crystal and redocking structures of N3 is 1.50 Å and 1.47 Å for that of leupeptin. The blue color denotes crystal structures, whereas the green colour is redocking structures



**Fig S3.** Trajectory of  $\Delta G^{\circ}_{MMGBSA}$  values of several ligands binding to  $M^{\text{pro}}$ . Each data point was generated from every 10 ns MD trajectory. The ligands include N3 inhibitor, leupeptin (LPT), and secondary metabolites in *N. sativa* seeds. They are nigellamine A2 (NA2), nigellamine A3 (NA3), melanthigenin (MTN), nigellidine-4-O-sulfite (NGS), taraxerol (TRX), and nigellidine (NGL)



**Fig S4.** RMSD plots of M<sup>pro</sup> in apo and ligand-bound forms and the ligands. The top panels are RMSD plots of the protein, whereas the lower panels are RMSD plots of ligands. The ligands are N3 inhibitor, leupeptin (LPT), and secondary metabolites in *N. sativa* seeds, including nigellamine A2 (NA2), nigellamine A3 (NA3), melanthigenin (MTN), nigellidine-4-O-sulfite (NGS), taraxerol (TRX), and nigellidine (NGL)



**Fig S5.** RMSF plots of M<sup>pro</sup> in apo and ligand-bound forms. The ligands are N3 inhibitor, leupeptin (LPT), and secondary metabolites in *N. sativa* seeds, including nigellamine, A2 (NA2), and A3 (NA3)



**Fig S6.** Non-bonded interactions between ligands and the binding site residues of M<sup>pro</sup> before and after MD simulations. For MD simulations, the non-bonded interactions were extracted from the last frame of the MD trajectories

#### Note: Significance Test on $\Delta G^{\circ}_{MMGBSA}$ Values

Below are the results of significance tests on  $\Delta G^{\circ}_{MMGBSA}$  values of several ligands to  $M^{\text{pro}}$ . These ligands are N3, leupeptin (LPT), nigellamine A2 (NA2), nigellamine A3 (NA3), and melanthigenin (MTN). Based on the Shapiro test,

binding energy data is normally distributed (*p*-value =  $9.34 \times 10^{-2}$ ;  $\alpha = 5\%$ ). Nonetheless, according to the Bartlett test, the data lack variance homogeneity (*p*-value =  $2.33 \times 10^{-3}$ ). Therefore, we performed a non-parametric significance test, the Kruskal-Wallis rank-sum test.

Kruskal-Wallis rank sum test

data: deltaG by Ligand Kruskal-Wallis chi-squared = 19.278, df = 3, *p*-value = 0.0002395

Since the Kruskal-Wallis rank-sum test showed the significant difference of  $\Delta G^{\circ}_{MMGBSA}$  values among ligands (*p*-value = 2.40 × 10<sup>-4</sup>), we conducted Dunn's multiple comparison test with the Bonferroni method as the post hoc test. The result suggests that the binding energy values leupeptin, nigellamine A2, and nigellamine A3 to M<sup>pro</sup> are not significantly different.

Comparison of  $\Delta G^{\circ}_{MMGBSA}$  by group (Bonferroni) Col Mean-Row Mean LPT MTN NA2 ------MTN | -3.194259 0.0042\* NA2 | 0.994619 4.188879 0.9598 0.0001\* NA3 | -1.013746 2.180512 -2.008366 0.9321 0.0877 0.1338 alpha = 0.05Reject Ho if p <= alpha/2

#### References

- [1] Nickavar, B., Mojab, F., Javidnia, K., and Amoli, M.A.R., 2003, Chemical composition of the fixed and volatile oils of *Nigella sativa* L. from Iran, *Z. Naturforsch.*, *C: Biosci.*, 58 (9-10), 629–631.
- [2] Khan, M.A., and Afzal, M., 2016, Chemical composition of *Nigella sativa* Linn: Part 2 Recent advances, *Inflammopharmacology*, 24 (2-3), 67–79.
- [3] Yimer, E.M., Tuem, K.B., Karim, A., Ur-Rehman, N., and Anwar, F., 2019, *Nigella sativa* L. (black cumin): A promising natural remedy for wide range of illnesses, *Evidence-Based Complementary Altern. Med.*, 2019, 1528635.
- [4] Ahmad, A., Husain, A., Mujeeb, M., Khan, S.A., Najmi, A.K., Siddique, N.A., Damanhouri, Z.A., and Anwar, F., 2013, A review on therapeutic potential of *Nigella sativa*: A miracle herb, *Asian Pac. J. Trop. Biomed.*, 3 (5), 337– 352.
- [5] Mehta, B.K., Pandit, V., and Gupta, M., 2009, New principles from seeds of *Nigella sativa*, *Nat. Prod. Res.*, 23 (2), 138–148.
- [6] Merfort, I., Wray, V., Barakat, H.H., Hussein, S.A.M., Nawwar, M.A.M., and Willuhn, G., 1997, Flavonol triglycosides from seeds of *Nigella sativa*, *Phytochemistry*, 46 (2), 359–363.

## Suppl. 16

- [7] Yuan, T., Nahar, P., Sharma, M., Liu, K., Slitt, A., Aisa, H.A., and Seeram, N.P., 2014, Indazole-type alkaloids from *Nigella sativa* seeds exhibit antihyperglycemic effects via AMPK activation *in vitro*, *J. Nat. Prod.*, 77 (10), 2316– 2320.
- [8] Morikawa, T., Xu, F., Ninomiya, K., Matsuda, H., and Yoshikawa, M., 2004, Nigellamines A3, A4, A5, and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin, *Chem. Pharm. Bull.*, 52 (4), 494–497.