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 Abstract: Environmental pollution resulting from various industrial activities is still a 
problem for developing countries. The high content of phenolics such as phenols, 
polyphenols, bisphenol A, catechol, m- and p-cresol from industrial activities are discharged 
into surface water, soil, and air. Periodic monitoring of the impact of these toxic 
pollutants is needed for proper control and handling. These detrimental chemicals are 
usually measured using conventional methods with many drawbacks such as expensive 
analysis costs, long measurement times, requiring competent analysts, and complicated 
instrument maintenance. However, the presence of tyrosinase-based paper biosensors is 
now considered the most promising tool in overcoming the challenges mentioned earlier 
because they can detect these components quickly, precisely, accurately, inexpensively, 
and can be measured in situ. The working principle of this biosensor sees optical changes 
such as dyes, redox processes, and physicochemical properties (aggregation or dispersion) 
due to the presence of analytes accompanied by the occurrence of color changes that 
appear. This biosensor uses a layer-by-layer electrostatic method, which causes the 
deposition of multi-layered films on solid surfaces. In this paper, we review the 
development of the tyrosinase-based paper biosensor method for phenolic measurement 
in water, air, and food that gives better results than the conventional methods. 
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■ INTRODUCTION 

The effects caused by water pollution that occurs in 
Indonesia cause poor levels of public health and a lack of 
availability of clean water in line with the increase in the 
economy and population. In a total of 34 rivers in 
Indonesia, almost 75% have been polluted [1] due to 
industrial and household activities in the form of organic 
and inorganic waste that exceeds the acceptable quality 
standard, which is 0.5 to 1.0 mg/L [2]. Phenol and 
polyphenol compounds are widely distributed in the 
environment, including those from sewage and natural 
waters. These pollutants tend to last longer and are 
difficult to degrade, causing severe toxic effects such as 
phenolic compounds. These compounds are present in 
many consumer products applied to body parts, such as 
mouthwash and liniment, including disinfectants for 
household cleaners. The by-products of these compounds 
originate from industrial activities such as the 

manufacture of dyes, plastics, pesticides, medicines, 
antioxidants, paper, and the oil industry [3]. Phenol 
liquid waste discharged directly into water bodies 
without prior processing makes the pollutant content 
higher, such as motor vehicle washing activities in the 
North Bekasi area which produce phenol on average 2.7, 
1.5, and 3.2 mg/L [4]. 

In the natural processes, phenolics are often used 
in perfume manufacturing and are applied in food as 
antioxidants [5-6]. Likewise, phenol and bisphenol are 
widely used in hospitals and households as disinfectants. 
The compound is used in the cosmetic, leather, textile, 
and paper industry. Exposure to this affects the 
endocrine system [7], exhibiting estrogenic properties 
[8]. They are also found in water due to the degradation 
of natural materials such as dead plants and animals 
(organic material), industrial activities, and agricultural 
activities (the use of pesticides, such as 
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pentachlorophenol that are degraded to chlorophenol). 
The decomposed materials are then washed and 
discharged to water bodies. The wide application of 
phenolics results in drastic ecological problems [9], such 
as bad odor and taste, irritation problems, and toxic at 
high concentrations. Their presence in drinking water 
quality can occur due to contamination in groundwater 
caused by the release of industrial products or leachate. At 
concentrations exceeding the threshold in freshwater 
(0.001 mg/L, as stipulated in the Indonesian Government 
Regulation No. 82/2001), they are harmful and toxic to 
human health [10] for the nervous system, heart, kidney, 
liver, and easily absorbed through the skin and mucous 
[11], affect embryonic development and sexual 
differentiation, either by binding to or by blocking 
hormone receptors that can affect some hormones [12]. 
They may decrease fertility levels, changes in thyroid 
hormone content [13-14], changes in liver and immune 
function, development of heart problems, increased 
chances of miscarriage or premature birth in pregnant 
women [15], and increase the risk of diabetes and cancer 
[16-18]. Various types of inorganic substances in 
wastewater interfere with the measurement of 
colorimetric samples, so it is necessary to do some kinds 
of pretreatment (distillation and extraction) before the 
actual measurement. The phenolics are generally 
measured using gas chromatography (GC) or high-
performance liquid chromatography (HPLC) equipment 
to test the water quality. However, this technique has 
several shortcomings, such as long analysis times, high 
costs, and competent technicians [19]. One way to 
overcome these problems requires equipment that can 
detect quickly and precisely, such as biosensors. 
Biosensors are one of the most widely applied 
technologies because of their small size, so they are easy 
to carry, have good accuracy of results, and are low-cost 
[20]. 

■ BIOSENSING TECHNOLOGY AND 
APPLICATION 

A biosensor is an analytical tool to measure the 
target molecules contained in the sample. The device 
consists of components to identify molecules such as 

aptamers, antibodies, and enzymes. Molecular 
recognition between the recognition element and the 
target compound provides a biological signal, converted 
in quantity and then measured by the transducer. These 
signals can be detected optically (colorimetry, 
fluorescence, chemiluminescence, surface plasmon 
resonance) or electrically (voltammetry, impedance, and 
capacity). The biosensors can be used as a continuous 
monitoring tool in contaminated areas to detect 
hazardous chemicals or substances. This technique 
offers the possibility of rapid in-situ monitoring, thus 
providing real-time information. The principle of the 
biosensor is that the desired biological material (specific 
enzyme) is immobilized by conventional methods 
(physical or membrane retention, non-covalent or 
covalent bonding). This immovable biological material 
is closely related to the transducer. The analyte then 
combines with the biological material to form a bonded 
analyte, resulting in a measurable electronic response. 

In some cases, the analyte is converted into a 
product associated with the release of heat, gas (oxygen), 
electrons, or hydrogen ions; then, the sensor converts 
the product into an electrical signal that can be amplified 
and measured. In short, biosensors are mini-systems 
that allow the development of portable sensors used in 
water quality monitoring [20-21] that can provide very 
low concentration values such as ppm, ppb, and ppt [22] 
of a compound. The development of biosensors has 
received considerable attention in recent years, such as 
enzyme-based, antibody, aptamer, immunosensor, and 
piezoelectric biosensors. Electrochemical, fluorescence, 
nanomaterial, silica or quartz, and microbial biosensors 
for various biomedical and environmental applications 
with future technologies have been reviewed [23]. The 
latest advances in current biosensor design combine 
nanomaterials with improving performance, such as 
optical, electrical, mechanical, and chemical properties 
(Table 1). However, current biosensor technology is 
quite good at detecting various analytes, with some 
disadvantages of low specificity and low sensitivity. In 
addition, the detection time is long, but the development 
of nanomaterial-based biosensors [24-26] can increase 
the sensitivity and response speed of biosensors in meeting  
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Table 1. Tyrosinase-based biosensors over time and their performance 
Sensor 
layer 

Analysis 
Detection 
method 

Concentration 
range 

Results LOD Ref. 

TiO2/MWCNTs/P
DDA/Nafi 

Determination of 
bisphenol A in a 
flow-batch system 

Electrochemistry of 
TYR/TiO2/MWCNTs/P
DDA/Nafion biosensor 

0.28–45.05 M Sensitivity of 9137 μA mM1 cm2, respond time every 
5 min for 45 min, stability 14 days, 25 °C 

0.066 mM [56] 

Au/CoP-Tyr Dopamine (DA) 
detection 

Cyclic voltammetry, 
AFM, and EIS 

2–30 μM The CoP-Tyr biosensor provides high sensitivity and 
good stability for up to seven days. Sensitivity 1.22 ± 
0.02 μA cm−2 μM−1. The standard deviation (RSD) 
value obtained is up to 4.7%,which indicates the 
potential use of biosensors in samples (blood or 
urine). The average achievement for CoP-Tyr is 96% 

0.430 μM [72] 

Porous Silicon Optical monitoring 
of pyrocatechol 

Spectrophotometer UV-
Vis 

1–100 μM Sensitivity increases with increasing catechol 
concentration 

0.43 μM [68] 

Tyr/SN-PA/SPE Phenolic 
compounds in 
water 

Differential pulse 
voltammetry (DPV) and 
amperometry methods 

0.01–160 μM 
and 0.1–300 μM 

Phenol detection concentration range of 0.01–160 
μM and 0.1–300 μM 

0.007 and 
0.042 μM 

[6] 

CNTs Phenol in 
wastewater 
treatment plant 

Electrochemistry 
(Screen-printed 
electrode) 

0.5 mM The activities of EA, EAC, and EAPC (catechol 
oxidation process) were 2.4, 4.6, and 25 A394/min 
per 1 mg CNTs, respectively. The activity increased 
10.5 and 5.4 times higher than EA and EAC, 
respectively. Response time 128 h, 40 days 

14 and 35 mM [63] 

Nafion/Tyr/Au 
/SPCE 

Bisphenol A 
detection 

Voltammetry, 
potentiostat, SEM and 
XRD 

0.5–50 μM The biosensor has a reproducibility (n = 3) with a 
relative standard deviation of 11%, and the obtained 
%RSD (n = 10) yields a value of 0.5% indicating good 
repeatability. Biosensor is stable in storage time after 
6 months with 90% response 

0.077 μM [67] 

Ty/Chit/PtNP/GP
H-CSPE 

L-tyrosine detection 
in medical and 
pharmaceutical 
samples 

Voltammetry 0.1–100 μM The maximum sensitivity and selectivity response of 
the biosensor was +0.8 V vs. Ag with an optimal pH 
of 7 

0.0475 μM [69] 

Long fiber grating 
with 
polyacrylamide 
gel 

Phenol solution 
concentrations 

Fiber-optic sensor 0–1000 μM The sensitivity of the sensor to catechol, m-cresol, 4-
chlorophenol and phenol was 0.0088, 0.0021, 0.0018, 
and 0.0009 nm/μM 

7.6 μM [37] 

Graphene oxide Phenol solution 
concentrations 

Surface plasmon 
resonance (SPR) 
spectroscopy 

1–20 μM Sensitivity 0.00234° M−1 1 μM [70] 

Au/pol/Tyr Epinephrine 
detection 

Chronoamperometry 0.1–50 μM The sensitivity based on the calculation of the ratio of 
the slope of the calibration curve to the surface area 
of the electrode was obtained 3.08.10-7A·μM−1·cm−2, 
and stability of the biosensor was tested every week 
using a 20 M EP solution, showing the stability level 
for 30 days 

0.06 μM [64] 

GE/β-CD-
AuNPs/Tyr 

Drug inhibition Amperometry 1.56–25 μM Low RSD values were obtained as 0.11 and 0.10%, 
respectively, indicating good repeatability (3.31 ± 
0.34 A) and reproducibility (3.02 ± 0.04 A). The 
biosensor was able to maintain 70% activity after the 
10th day at 4 °C 

0.42 μM [65] 

SiSG-TYR/Fe3O4-
MWCNT/GCE 

Simultaneous 
detection of 
catechol and 
hydroquinone in 
local tap water 

Cyclic voltammetry 1.5–30 and 1.5–
40 μM for CC 

and HQ 

The biosensor provides satisfactory repeatability, 
reproducibility, good stability, and anti-interference 
performance with low relative standard deviation 
(RSD) values of 1.38 and 1.18%, respectively 

0.055 and 
0.057 μM 

[62] 

Tyr/CSCNT/felt Determination of 
hydroquinone in 
water 

 Voltammetry, SEM, 
and AFM 

9–545 μM CSCNT/felt was able to detect the presence of 
hydroquinone, but there was a significant increase in 
current when Tyr was immobilized in CSCNT/felt. 
Measurement of hydroquinone was conditioned in 

1.4 μM−1 [71] 
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Sensor 
layer 

Analysis 
Detection 
method 

Concentration 
range 

Results LOD Ref. 

0.1 M phosphate buffer, at a maximum pH of 7.0 (R2 
= 0.99777), LOQ was 4.5 μmol L−1 

PA6/PAH@AuNP
s/Tyr/FTO 

Bisphenol A 
detection in water  

Chronoamperometry, 
SEM, and Spectroscopy 
(UV–Vis 

0.05–20 μM A large irreversible peak when 5 M BPA was added 
to the PA6/PAH@AuNPs/Tyr electrode with (n = 3), 
an increase in the RSD value of 2.9 to 7.6% 

0.011 μM [73] 

 
the detection requirements of the target analytes [27]. 

Various biosensor applications from year to year 
continue to be developed in various aspects such as 
environmental quality monitoring [28-30], the food 
sector [31], the agri-food sector [32-33], agriculture [34-
35], for diagnostic purposes (discovery of pathogens and 
drugs), detection of toxins and diseases [36], and 
detection of hazardous substances in defense sector [37-
38]. The research that has been carried out by the author 
[39] used microorganisms originating from Indonesia 
(Lactobacillus plantarum, Uricase) immobilized on 
natural zeolites as solid media in the health sector. Uric 
acid in urine samples could be easily detected by 
biosensors using carbon paste electrodes at the optimum 
conditions, namely pH 7.6 and 28 °C, giving a uric acid 
concentration value of 0.015 mM; the device was stable for 
up to 18 d. The next work [40] was carried out using the 
results of endophytic-free, wild dringo bengle (bangle, 
Zingiber cassumunar) tissue cultures to determine the 
characteristics of pancreatic inhibitory compounds. The 
results were then compared with the activity of 
Streptomyces, endogenous AEBg12 extracted with 
ethanol (the best solvent), to obtain pancreatic lipase 
inhibitor compound with IC50 value of ethanol extract 
180.83 g/mL. The TLC results showed that the ethanolic 
extract of Streptomyces AEBg12 had a luminous blue 
band, indicating the presence of flavonoids, flavanones, 
flavonols, or isoflavones, due to the inhibitory activity of 
the microbe. AEBg12 was higher than bangle and wild 
bangle tissue culture. Another use is to detect malaria 
spreading, which generally occurs in tropical and densely 
populated areas such as Indonesia and the African 
continent. Nearly 1.2 million deaths each year occur in 
Africa due to malaria; 70% of malaria infection is located 
in 11 African countries and the Indian subcontinent [41]. 
This is a severe threat because it can cause loss of human 
life and reduce government budgets for developing and 

underdeveloped communities. Early and rapid detection 
is needed, as performed by Ragavan et al. [11] by 
designing a gold nanoparticle biosensor to prevent the 
spread of malaria. In terms of health, this biosensor 
technique continues to develop from time to time [42-
43]. Enzyme-based biosensors have also been used to 
monitor beer quality during storage using cobalt 
phthalocyanine as an electronic mediator [28] and 
continue to progress in agriculture [35] as well as in the 
environmental field. Enzyme-based biosensor 
technology has made this equipment a major trend from 
2010 to 2018 due to its high selectivity and sensitivity 
over antibody-based biosensors [44]. 

■ TYROSINASE-BASED PAPER BIOSENSOR 
Compared to chip-based biosensors, the use of 

paper-based biosensors in POC testing has received 
more attention due to their cost-effectiveness, 
biodegradability, ease of manufacture, functionalization, 
and modification [45]. Tyrosinase is known to be able to 
detect phenolic compounds because of its high substrate 
specificity. This enzyme is a copper-containing 
monooxygenase found in many microorganisms, 
animals, and plants [46-47] and catalyzes two main 
reaction processes: the hydroxylation of monophenolase 
and L-tyrosine, the oxidation of diphenolase and L-
DOPA (3,4-dihydroxyphenylalanine). A tyrosinase-
based biosensor is a preferred method and is being 
developed because it has advantages such as specificity, 
fast response time, accuracy, inexpensive analysis, and is 
more environmentally friendly [20]. The main 
properties of the development of tyrosinase-based 
biosensors include accuracy and precision, sensitivity, 
specificity, wide measurement range, test reliability, easy 
calibration, and long-term stability. These properties are 
beneficial for their use in food and environmental 
applications that make researchers continue to develop 
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tyrosinase-based biosensors in various test analyses with 
their advantages and disadvantages (Table 2). The 
tyrosinase-based paper biosensor is one of the many 
existing techniques because it is more practical without  
 

the need for sophisticated tools in the subsequent testing. 
The function of filter paper in paper biosensors is to 
facilitate strong biomolecular adsorption and improve 
morphological properties, strength, and retain moisture.  

Table 2. Tyrosinase-based paper biosensors over time and their performance 
Sensor 
layer 

Analysis 
Detection 
method 

Concentration 
range 

Results LOD Ref. 

Chitosan & 
alginate 

Phenolic 
Compounds in 
Water 

Paper Biosensor 
(optic), 
Spectrophotometer 
UV-Vis 

1–500 μg/L The sensitivity of paper biosensors for clean water 
and river water is 5 g/L 

0.86 (±0.102) 
μg/L 

[49] 

TYR and MBTH Polyphenol test in 
grapes 

Paper Biosensor 
(optic) 

0–0.5 mM Smaller yield than the Winder-Harris assay and 
Folin-Ciocalteu assay 

5 μM [52] 

Chitosan & 
alginate 

Bisphenol A dust 
household scale 

Colorimetric and GC 0.05 to 3.87 μg/g The average color intensity of 100 μg/g household-
scale BPA dust is 112.6 (± 2.082) with an RSD value 
of 0.018 (n = 3). The biosensor was rinsed using a 
phosphate buffer solution and tap water. Slightly 
higher colorimetric yield at 100 μg/g BPA in 
phosphate buffer (112.6 ± 2.082; n = 3) compared to 
tap water (110.1 ± 3.055; n = 3) 

0.28 μg/g [57] 

Gold 
nanoparticles, 
chitosan and 
alginate 

Phenol from the 
effluent of wine, 
paper, and plastic 
industries 

Paper biosensor (see 
the color change that 
occurs) 

0–1 mM Waste sensitivity from winery (0.991 mM), paper 
(0.78 mM) and plastic (0.487 mM) 

- [58] 

TiO2/MWCNTs/P
DDA/Nafi 

Determination of 
bisphenol A in a 
flow-batch system 

Electrochemistry of 
TYR/TiO2/MWCNTs/
PDDA/Nafion 
biosensor 

0.28–45.05 M Sensitivity of 9137 μA mM1 cm2, respond time every 
5 min for 45 min, stability 14 days, 25 °C 

0.066 mM [56] 

Tyr and MBTH Monitoring of 
phenolic 
compounds in 
wastewater 

Paper biosensor 0–0.512 mM The sensitivity of the biosensor was tested using 4-
chlorophenol, catechol, m-cresol, and p-cresol in a 
concentration range of 0.001 to 0.512 mM. Sensor 
stability for 70 days at 4 °C 

0.032 mM for 
4-chlorophenol 
and 0.128 mM 

for m-cresol 
and p-cresol 

[66] 

Nafion/Tyr/Au/S
PCE 

Bisphenol A 
detection 

Voltammetry, 
potentiostat, SEM and 
XRD 

0.5–50 μM The biosensor has a reproducibility (n = 3) with a 
relative standard deviation of 11%, and the obtained 
%RSD (n = 10) yields a value of 0.5% indicating good 
repeatability. Biosensor is stable in storage time after 
6 months with 90% response 

0.077 μM [67] 

Tyr/SN-PA/SPE Phenolic 
compounds in 
water 

Differential pulse 
voltammetry (DPV) 
and amperometry 
methods 

0.01–160 μM 
and 0.1–300 μM 

Phenol detection concentration range of 0.01–160 
μM and 0.1–300 μM 

0.007 and 0.042 
μM 

[6] 

 
Hydrogen bonding and electrostatic adsorption occur 
between filter paper and chitosan due to the charged 
surface and structural similarities [48] (Fig. 1). The 
tyrosinase catalyzes the hydroxylation of monophenols to 
o-diphenols and the oxidation of o-diphenols to o-
quinones (Fig. 2). 

A paper biosensor made from cellulose is used as a 
supporting matrix in maintaining enzyme activity, and 
tyrosinase identifies samples on the paper's surface in 

maintaining the enzyme activity. The paper biosensor 
assembly is formed using a layer-by-layer (LbL) 
technique so that the solution of chitosan and alginate 
polyelectrolytes can settle to the surface layer of filter 
paper. The principle of this paper biosensor is to look at 
the color formation that occurs, which can then be 
measured by colorimetry [49]. 

Paper biosensors assembly using the electrostatic 
LbL   method   allows   for   the   uniform   deposition   of  
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Fig 1. Mechanism of tyrosinase-based paper biosensor for phenolics 

 
Fig 2. Mechanisms of the tyrosinase reaction 

 
multilayer films on the chitosan surface [49]. This 
assembly technique uses a combination of enzymatic 
oxidation of phenolic compounds by chitosan and 
tyrosinase that is stable, effective, and very flexible. The 
technique allows the incorporation of various materials 
such as polymers, biomolecules, clays, metal oxides, 
colloidal nanoparticles, and even biologically active 
compounds into various multilayer systems. The most 
crucial part of constructing paper biosensors is 
biocomponent immobilization [50]. Tyrosinase-based 
paper biosensor technology is based on quantitative 
measurements of the formation of color intensities, which 
are then expressed digitally, such as red, green, and blue, 

and then quantified as analyte concentrations [51]. 
Therefore, the paper biosensor method is very 
appropriate for monitoring environmental quality and 
food and beverage products without the need for 
sophisticated techniques as these techniques continue to 
be developed. 

■ PAPER BIOSENSOR APPLICATIONS FOR 
PHENOLICS MEASUREMENT 

Advances in paper biosensor techniques over time 
are used in many activities such as in the food industry 
and the health and environmental fields because they 
can provide stability and sensitivity that is more effective  
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Fig 3. The information of colors for each compound [49] 

 
than conventional methods, including utilizing effective 
chemicals in the measurement process. For example, 
paper colorimetric bioassays for detecting phenol have 
been successfully carried out to determine river water 
quality and, for the first time, without using chromophore 
reagents, were able to measure phenolic concentrations as 
low as 5 g/L with good results at the time of color 
formation (Fig. 3). 

The paper biosensor in this study uses 11 cm 
diameter cellulose paper with medium porosity, which 
can remove 1 μm particles and has a particle retention 
time of 510 min. Thus, it is very suitable for clinical trials 
and phenolic detection. Tyrosinase was immobilized 
using chitosan and alginate to maintain enzyme 
performance for a long time, as reported in various 
storage processes. The tyrosinase-based paper bioassay 
was also evaluated using five layers of tyrosinase  
(200 units/μL) concentration, 1.25% chitosan 9 μL per 
layer. It was considered sufficient to form o-quinone 
enzymatically, 2% alginate from 6 μL per layer. 
Measurement of the color formed is then viewed using 
colorimetry for various compounds. Phenol gave a 
reddish-brown color, bisphenol A (BPA) gave a bluish-
green color, dopamine exhibited a brown color, and orange 
for catechol, m-cresol, and p-cresol in the concentration 
range of 1500 g/L. The work obtained by Alkasir et al. 
[49] offered very satisfactory results because it detected 
very low concentrations up to the range of 5 ppb and 
without adding chromophores in clean water and river 
water samples. This experiment is referred to by other 

researchers in developing paper biosensor technology to 
detect phenolic compounds in various media (Fig 3). 

An experiment was then conducted by Arciuli et al. 
[52] to determine the quality of food products by testing 
the polyphenol content in five types of grapes 
(Franciacorta (Fc), Pinot (P), Sauvignon (S), Table wine 
(T), Frascati (F). The experiment used o-diphenolic L-
DOPA as a compound that generally cannot give 
stoichiometric results since it has unstable properties 
and can inhibit the final separation of the products. 
Hence, a nucleophilic compound was added, namely the 
chromophore 3-methyl-2-benzothiazolinone hydrazone 
(MBTH) reagent, giving the bioactive paper a pink 
(stable) color. After adding the L-DOPA sample 
concentrations ranging from 0.01 to 10 mM, the o-
quinone formed (enzymatic oxidation) reacted with 
MBTH giving a pink color to the bioactive paper after 5 
min of exposure. There was no color change after that. 
The intensity of the resulting color depends on the 
concentration value (Fig. 4). 

The results of wine samples (n = 3) were then 
compared with the Winder-Harris method (enzyme test, 
and it turns out that there is a difference in the t-test in 
the two wine samples, while the Folin-Ciocalteu method 
(phenolic test) shows higher yields (except for the 
Sauvignon wine sample) due to the presence of sulfite 
interfering which reduces the formation of antioxidants 
and non-phenolic sugars in the wine samples [53] (Table 
3). 

The two paper biosensor preparations qualitatively  
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Table 3. Phenol index is L-DOPA equivalent (mM) by performing three replications [52] 

Wine type Bioactive 
filter-paper 

Winder-Harris 
assay 

Folin-Ciocalteu 
assay 

Frascati 0.19 ± 0.06 0.20 ± 0.05 1.70 ± 0.18 
Franciacorta (sparkling wine) 0.28 ± 0.04 0.23 ± 0.04 1.06 ± 0.18 
Pinot 0.26 ± 0.04 0.20 ± 0.08 0.73 ± 0.07 
Sauvignon 0.28 ± 0.09 0.15 ± 0.10 0.22 ± 0.05 
Table wine (sold in tetrapak) 0.26 ± 0.04 0.21 ± 0.09 1.0 ± 0.12 

 

 
Fig 4. Image of filter paper with bioactive spots [52] 

measure the phenolic content in wine samples using 
MBTH chromophore reagent, which reacts enzymatically 
with quinone to form a stable pink color. The subsequent 
work was then carried out by Hidayat et al. [54-55] in 
testing the total polyphenol content in green tea drinks 
from various local markets in Jember, Indonesia, using 
MBTH chromophore reagent. The results are not better 
than the Arciuli et al. [52] work in terms of the stable color 
formation time obtained up to 13 min despite using 
sodium periodate samples [55], which exhibits a faster 
ability as an oxidizing compound on polyphenols versus 
tyrosinase [53]. Water-soluble BPA is a hazardous 
chemical that can interfere with thyroid function, 
decrease the immune system and nervous system, and 
reduce sperm quality in humans. This compound is 
widely used in the manufacturing of polycarbonate 
plastics, epoxy resins, polyacrylate, and polysulphone 
resins used as packaging for food and drinks such as food 
cans and beverage bottles or plastic waste bins [56]. BPA 
concentrations were determined by biosensors using 
modified walled carbon nanotubes (MWCNTs), 
polycationic polymer poly(diallyl dimethylammonium 
chloride/PDDA), and Nafion. A mixture of TYR/TiO2/ 

MWCNTs/PDDA/Nafion was observed using scanning 
electron microscopy (SEM) (Fig. 5). Three-dimensional 
pore-shaped structure for the TYR/TiO2/MWCNTs/ 
Nafion and visible carbon nanotubes was found in the 
cracks. PDDA addition produces a matrix film with 
larger porosity allowing diffusion to occur. The results 
of this biosensor have a response of 0.28 and 45.05 mM, 
which can determine the BPA contained in the sample. 

Paper biosensor technology for detecting BPA dust 
samples at the household scale was introduced [57]. The 
equipment was constructed into two parts, namely an air 
sampler and tyrosinase-based paper biosensors in the 
form of a 0.6 cm diameter plate. Plastic tapes are used as 
biosensor paper collection tools to measure the BPA 
based on its color changes. BPA dust sampling locations 
are around 100 cm2 using portable biosensor equipment 
rate of 2.5 L/min through a long rubber tube of 25 cm. 
The BPA dust biosensor technique uses the LbL method, 
immobilized between chitosan and alginate. The 
formation  of greenish  color appears  the first  60 s  after  

 
Fig 5. SEM results on graphite electrode surfaces for (a) 
TYR/TiO2, (b) TYR/TiO2/MWCNTs/Nafion and (c) 
TYR/TiO2/MWCNTs/PDDA/Nafion (d) Higher 
magnification for 5(c) [56] 
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the addition of buffer (PBS pH 6.5). The stable color after 
30 min confirms the presence of quinone-imine 
compounds as seen from the absorption band formed at 
the wavelength of 610 nm, indicating the presence of 
quinone carbonyl and nucleophilic amino groups for 
consisting of an aerosol sampling section, with a 6.0 cm 
hose size directly connected to the aerosol pump, a flow 
BPA compounds (Fig. 6). Phenol waste from wine, paper, 
and plastic industries was detected by paper biosensors 
[58] using chitosan and Tyr-AuNps bioconjugates from 
immobilized Streptomyces nanomaterials on different 
filter papers. The filter papers were ordinary filter paper, 
Whatman 1 paper, and NaTPP treated Whatman 2 paper. 

The use of several types of filter paper aims to 
compare the detection time intervals and obtain poor 
detection results at 4 min with ordinary filter paper. The 
detection was quite good at 4 min for Whatman 1, and 
good detection results at 3 min for Whatman 2 of various 
types of industrial waste. Observation of detection color 
showed reddish-brown color for wine waste indicating 
the presence of phenol, dark brown color for paper waste 
indicating the presence of dopamine, and an orange color 
for plastic waste samples for catechol. The results were 
then compared with two standard methods, namely the 4-
aminoantipyrine (AAP) and the fluorochromatic (FCR) 
test, showing fairly balanced results with the efficiency 
value of the inner paper biosensor in the wine industry 

waste (0.991 mM), paper industry waste (0.78 mM), and 
plastic waste (0.487 mM) using phenol standard [58]. 

■ BIOSENSOR PERFORMANCE TEST 
The application of enzymes in industrial 

biosensors has limited functions, such as biosensor 
stability due to the loss of enzyme activity. Thus, over 
time, modifications were made in the biosensor 
assembly, which was able to increase enzyme activity 
and biosensor stability. Three critical aspects regarding 
the quality of biosensor performance are sensitivity, 
stability, and reproducibility. The shelf life after the 
biosensor fabrication can influence the containment of 
enzyme activity. The enzyme can generally be stabilized 
by avoiding the degradation process or minimizing 
degradation using a practical immobilization approach. 
Immobilization is also helpful in increasing sensitivity, 
response time, stability, and reproducibility. 
Reproducibility testing aims to see the uniformity of 
measurements of equivalent samples, carried out by 
different analysts and different equipment in one or 
more laboratories at the same time or different 
measurements using the same sample, performed by 
other analysts and other equipment in one or more 
laboratories at the same time or at different times. 
Immobilization between chitosan and alginate in the 
manufacture of paper biosensors can make the enzymes  

 
Fig 6. The shape of BPA dust-based paper biosensor (a) Air sampling cassette (b) Equipment put together with hose 
(c) Equipment connected to a pump with a rubber tube (d) BPA dust particle buildup (e) The color change after 
interacting with BPA dust (f) Greenish color is visible during the image scanning process [57] 
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trapped and result in strong electrostatic intermolecular 
interactions [59]. Biosensor stability is also evaluated 
from the storage factors, both temperature and storage 
time. Tyrosinase-based paper biosensors that were 
immobilized using chitosan and alginate can be stored for 
260 d at room temperature (25 °C), giving a good stability 
rate of 92%; meanwhile, storing in a refrigerator (2–8 °C) 
within 54 d increased the stability up to 99%. In the freezer 
condition (−20 °C) for 260 d, the stability was 97%, which 
is the best achievement for enzyme-based paper 
biosensors without adding chromophore reagents. The 
reproducibility test was carried out using a concentration 
of phenol and BPA 100 μg/L, triplicates (n = 3). For 
phenol, the average color intensity was 139.6 (± 3.7) with 
a relative standard deviation (% RSD) value of 2.7%, and 
for BPA was 108.0 (± 3.4) with an RSD of 3.2%. Regarding 
the sensitivity, the paper biosensor was capable of 
measuring phenolics as low as 5 μg/L concentrations with 
a detection limit of 0.86 (± 0.1) μg/L [49]. 

The total polyphenols in green tea drinks from 
traditional markets in Indonesia were determined using 
tyrosinase, and MBTH was immobilized on a filter paper 
[55]. This enzymatic oxidation reaction can occur when 
0.52 mM catechins as much as 5 μL are used as the 
substrates in detecting the total polyphenol content (TPC) 
(Table 4). The oxidized catechin by tyrosinase followed by 
a reaction of its corresponding quinone by adding MBTH 
chromophore changes the color from colorless to stable 
pink at 13 min at a pH ranging from 7.0–7.5 [60-61]. This 
paper biosensor can be stable for 8 days if stored at a 
temperature (−4 °C) and will drop 15% a day if stored at 
room temperature (25 °C) and in the refrigerator (4 °C). 
This method is then compared using ultraviolet-visible 
spectrophotometry. 

It can be concluded that these two methods do not 
give a significant difference (using the t-test), as seen 
from the df = 4 and α = 0.05, with a value of R2 = 0.9788. 
Therefore, biosensors can be used for testing the total 
levels of polyphenols in green tea drinks and would be 
appropriate to be applied in tea plantations. Meanwhile, 
sodium meta-periodate (NaIO4) reagent and MBTH 
chromophore give a faster and more stable color 
response at 9 min. The device is stable for 20 d at 4 °C; 
activity decreases slowly. At room temperature, the 
activity continued to decrease due to the instability of 
the MBTH as the temperature increased. The 
reproducibility was evaluated six times (n = 6), giving 
good results with RSD values of 0.628%, less than 2%, 
with a measurement range of 25–300 ppm [48]. 

A paper biosensor for detecting BPA in a living 
room carpet has a sensitivity of 0.38 to 1.25 μg/g BPA 
[49] with a detection limit of 0.28 g/g. The concentration 
of 1.28 to 3.78 μg/g BPA resulted from sampling at the 
childcare center that holds about 60 children. The 
household-scale BPA results are known to come from 
floor cleaning resins and furniture, plastic beverage 
containers, plastic toys, clothes racks, mattresses, rubber 
shoes, and boots. The BPA dust biosensor 
reproducibility was evaluated using BPA concentrations 
of 100 μg/g carried out at three locations (n = 3), 
resulting in average color intensity of 112.6 (± 2.082) 
with a calculated RSD value of 0.018. This biosensor 
method is validated by GC. The comparative BPA 
analysis of the three samples of new carpet dust gives a 
BPA concentration of 0.8 ± (0.18) for the colorimetric 
method and 0.83 ± (0.15) for the GC method. The 
performance of both methods can be seen from the 
linear regression curve: y = 0.9484x + 0.2508; R2 = 0.9743  

Table 4. Results of various types of green tea drinks for total polyphenol by biosensor and UV-Vis spectrophotometry 
(n = 3 m, α = 0.05) 

Sample Polyphenol biosensor Spectrophotometer tcal 
K 0.747 ± 0.017 0.802 ± 0.005 0.174 
L 0.403 ± 0.006 0.376 ± 0.022 2.000 
M 0.557 ± 0.015 0.537 ± 0.003 2.194 
N 0.448 ± 0.007 0.447 ± 0.003 0.170 
*Results were obtained by independent t-test, with t value (ttab) of 2.776 (df = 4 and α = 0.05) [55] 
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with a slope of 0.95, and this bias is considered to be 
within acceptable tolerance limits because it is seen from 
the error factor at the time the sampling process and the 
analysis process. The validation results show that the 
output of the two methods is in good agreement. The 
characterization was then continued by using GC/MS to 
confirm the presence of BPA in household dust. The mass 
spectrometer shows an abundance of 228 m/z for the BPA 
standard (MW = 228 g/mol). 

■ CONCLUSION 
Paper biosensors have been widely used in various 

applications to improve the quality of life and the 
environment in long-term monitoring because of their 
stability, low cost, and ease to use in the process of making 
biosensor equipment, environmentally friendly, quick 
and accurate measurement. Tyrosinase-based paper 
biosensors can test very low concentrations (ppm, ppb, 
and ppt) in analytes based on color changes when solid 
support media such as chitosan are enzymatically 
immobilized in quinones (tyrosinases) in the presence of 
cellulose additives in the filter paper. The performance of 
this enzyme-based paper biosensor can be evaluated 
based on its sensitivity, stability, and reproducibility 
properties. However, stability is the most crucial 
performance test on paper biosensors because they are 
very sensitive to temperature changes that occur during 
the storage period. Tyrosinase-based paper biosensors 
have enormous potential in recent decades and will 
continue to be developed. This review provides an 
overview of the efforts to develop paper tyrosinase-based 
biosensors based on their advantages: simple, 
inexpensive, fast, and reliable. The design of paper 
biosensors that can be connected directly through other 
portable and automated devices such as cellphones or 
smart watches through the programs used can make this 
technique more complete, popular, and a mainstay in the 
future. So that not only from certain aspects but can be 
used in various scientific fields. 
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