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 Abstract: A phytochemical investigation of three species of Malaysian Dipterocarpus 
contributed to the isolation of 22 compounds which consist of 15 oligostilbenoids, 2 
terpenes, 2 coumarins, and 3 flavonoids. The isolation of flavonoids in the 
Dipterocarpaceae family is very limited. Moreover, 4-methoxepigallocatechin-3-O-O-(3-
methyl) gallate (20) was isolated for the first time in the plant. The occurrence of 4-O-
methylgallocatechin (18) and its stereoisomer; 4-O’-methylepigallocatechin (19) was first 
reported in the Dipterocarpaceae family. This study also reported the existence of several 
types of oligostilbenoids such as davidiol A (8), stenophyllol B (9), isohopeaphenol (11), 
resveratrol (1), and ampelopsin E (10) which are the first occurrence in Dipterocarpus 
genus and suggested a significant chemotaxonomic relationship between Dipterocarpus, 
more closely to Vatica which is classified under Dipterocarpeae tribe. 

Keywords: chemotaxonomy; Dipterocarpaceae; Dipterocarpus; flavonoid; 
oligostilbenoids 

 
■ INTRODUCTION 

Dipterocarpus is one of the main genera of 
Dipterocarpaceae, which consists of 75 species. This 
genus is the third largest genera in the Dipterocarpaceae 
family, after Shorea (150 species) and Hopea (100 species) 
[1]. Despite its significance in the family, Dipterocarpus 
has been the subject of limited research. The chemical 
properties of various Dipterocarpus species have been 
investigated, revealing the presence of resveratrol oligomers 
and triterpenoids [2]. Besides, ursolic acid, quercetin, and 
catechin were isolated from Dipterocarpus retusus [3]. 
There are only 9 species that were repeatedly isolated as 
resveratrol oligomers, which are D. hasseltii [4], D. retusus 
[4], D. grandiflorus [5], D. verrucosus [6], D. cornutus [7], 
D. intricatus [8], D. semivestitus [9-10], and D. alatus [11]. 

D. alatus was also used to harvest triterpenoid [12]. 
Table 1 shows the constituents of chemical properties of 
seven genera of tribe Dipterocarpeae, which are 
Dipterocarpus (9 species), Vatica (12 species), Upuna (1 
species), Anisoptera (3 species), Stemonoporous (1 
species), Vateria (2 species), and Cotylelobium (2 
species) [13]. Dipterocarpus, Cotylelobium, Anisoptera, 
and Stemonoporous genera showed the ability to 
produce resveratrol oligomers up to tetramer. In 
contrast, Vatica sp. produced a higher degree of 
polymerization, which is up to hexamer, heptamer and 
octamer. Meanwhile, Upuna produced up to hexamer, 
and Vateria produced up to octamer resveratrol. 

Additionally, the phylogenetic placement of 
Dipterocarpus species within the Dipterocarpoideae sub-
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family remains unclear, indicating the need for further 
research in this area [14]. Numerous studies have been 
done to clarify the controversy regarding the number of 
genera of the Dipterocarpoideae subfamily. In addition, 
Sri Lankan Dipterocarpus species (D. glandulosus, D. 
hispidus, D. insignis, and D. zeylanicus) form a separate 
clade and Dryobalanops also form a distinct and highly 
supported monophyletic clade [15]. A study done by 
Cvetković et al. [16] provides strong support for revising 
the tribal classification of the subfamily of 
Dipterocarpoideae into four main clades: Dipterocarpeae 
(Dipterocarpus), Dryobalanopseae (Dryobalanops), 
Shoreeae (Hopea, Neobalanocarpus, Parashorea, and all 
parts of a polyphyletic Shorea) and Vaterieae (including 
all other presently accepted Dipterocarpoideae genera). A 
study reveals Hopea forms a clade with Shorea sections 
Anthoshorea and Doona [17]. Meanwhile, Dipterocarpus 
is placed as a sister to the tribe Shoreae. This separates 
Dipterocarpus from the remaining genera of tribe 
Dipterocarpeae containing the following genera: 
Anisoptera, Cotylelobium, Stemonoporus, Upuna, Vateria, 
Vateriopsis and Vatica [18]. The inconsistency of 
placement of Dipterocarpus in molecular phylogenies is 
consistent with its unique morphology, Cvetković et al. 
[16] and Ashton and Heckenhauer [18] proposed to 
isolate it in a monotypic tribe, requiring the renaming of 
the former Tribe Dipterocarpeae: Dipterocarpeae, 
Vaticeae and Shoreae. 

The classification of Asian Dipterocarps into 
taxonomic relevant units (tribes, genera, sections, 
subsections) has been reviewed by Widians et al. [19] 
based on the previous work by Aslam et al. [1] and others 
[20-22]. Furthermore, the chemotaxonomy of 
Dipterocarpus and its relationship with other genera in 
Dipterocarpaceae have been explored, shedding light on 
the chemical constituents of different genera within the 
tribe Dipterocarpeae. 

Studies have also identified the potential biological 
activities of Dipterocarpus species, such as antidiabetic 
and antiplasmodial properties [23]. Moreover, the effects 
of Dipterocarpus species, such as Dipterocarpus alatus, on 
UV B-protection, collagen stimulation, and nitric oxide 
inhibition have been investigated [24]. The bioactivity of 

secondary metabolites from Dipterocarpus species are 
antidiabetic, antiplasmodial, antibacterial, antioxidant, 
anti-classes, cytotoxic, anticholinesterase, 
antiproliferation, anti-inflammatory and antimicrobial 
[25]. Fractions isolated from D. intricatus flowers can be 
utilized as natural antimicrobial, antioxidant, and 
cytotoxic agents for medicine [26]. The Keruing wood 
contained extractive substances with the main compound 
of bioactive caryophyllene and the total caryophyllene 
content in extractive wood reached 47.68% [27]. 

Recent researchers have conducted numerous 
studies on resveratrol due to its highly promising 
bioactivities [28-32] and its most prominent stilbenoid 
synthesized by plants [33]. Resveratrol demonstrated a 
significant effect in formulations for dermatology and 
cosmetics [34-35], a promising candidate for the 
development of nutraceuticals and pharmaceuticals [36], 
modulates the inflammatory response [37] and drug 
formulation [38]. Resveratrol dimers such as ε-viniferin 
exhibited strong activities against inflammatory and 
oxidative stress [39]. Higher degree of resveratrols such 
α-viniferin possess potential antidiabetic and 
antiplasmodial activities [40], meanwhile, (-)-
hopeaphenol showed its potential in inhibiting the viral 
entry across multiple SARS-CoV-2 variants [41]. These 
findings underscore the importance of further research 
to fully understand the chemical composition and 
biological activities of Dipterocarpus species. 

■ EXPERIMENTAL SECTION 

Materials 

Samples of the stem bark of D. verrucosus, D. 
crinitus, and D. cornutus were collected in March 2010 
from the forest reserve UiTM Jengka, Pahang, Malaysia. 
The plants were identified by a botanist, and a voucher 
specimen (SKD1, SKD2, and SKD3) was deposited in the 
herbarium of Universiti Teknologi MARA, Malaysia 
(Pahang Campus). 

Instrumentation 

Infrared (IR) spectra were recorded on the 
Spectrum One FTIR spectrometer (Perkin-Elmer). The 
ultraviolet (UV) spectra were recorded on a UV-vis 160i 
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(Shimadzu). The optical rotation was measured on the 
Autopolar VI Automatic Polarimeter. The melting points 
(uncorrected) were determined using a micro-melting 
point apparatus. HRESI-MS spectra were obtained with 
Agilent Technologies 6224 TOF LC/MS. The 1D- and 2D-
NMR data were obtained from FT Bruker 300 Ultra shield 
(300 MHz for 1H and 75 MHz for 13C), JEOL UKM 
(500 MHz for 1H and 100 MHz for 13C), JEOL Meijo 
Nagoya University Pharm Japan (500 MHz for 1H and 
100 MHz for 13C), and Bruker 500 Ultra shield (500 MHz 
for 1H and 100 MHz for 13C) (RIND UiTM) using various 
commercially available deuterated solvents such as 
chloroform-d, acetone-d6, and methanol-d4. Mestrenova 
software was used to analyze the spectrum in detail. The 
vacuum liquid chromatography (VLC) was carried out 
using Si-gel Merck 60 GF254 (230–400 mesh, cat No. 
1.07747), the process of column chromatography (CC) 
was performed with Si-gel Merck 60 (200–400 mesh), 
Sephadex LH20, and thin layer chromatography (TLC) 
analysis on pre-coated Si-gel plate with Si-gel Merck 
Kieselgel 60 F254 0.25 mm, 20 × 20 cm, cat No 1.05554, 
and radial chromatography with Merck Si-gel 60 GF 254 
(5-40 μm, cat. No 1.07749). 

Procedure 

The stem barks of D. verrucosus were cut into small 
pieces, air-dried, and ground into fine powder. The finely 
ground plant materials were weighed (6 kg) and 
macerated with acetone (4 × 9 L). The acetone extract was 
concentrated to a volume of 250 mL. Diethyl ether was 
added to the concentrated acetone extract to obtain ether-
soluble and insoluble fractions that are free from tannin. 
The soluble material was evaporated in a vacuum at 40 °C 
to yield 60 g crude extract. The extract was stored at room 
temperature. The isolation process started with 2 × 30 g 
crude extract using VLC with a 10 cm in diameter column 
and silica gel weighed 250 g. This crude was 
chromatographed by n-hexane (Hex)-ethyl acetate 
(EtOAc), ethyl acetate-methanol (MeOH) to methanol 
(100%) (gradience of increasing methanol) to provide five 
fractions (DV1–DV5). The fractions were subjected to 
further isolation using repeated VLC and were purified by 
repeated RC, CC, and PTLC on silica gel, eluted with 
various solvent systems such as chloroform (CHCl3)-

MeOH, Hex-CHCl3-MeOH, CHCl3-Hex, and CHCl3-
EtOAc-MeOH. The same procedure above was repeated 
on the samples of D. cornutus (5 kg) and D. crinitus (4 kg). 

From the study, isolation using repeated VLC and 
purification by repeated RC, CC, and PTLC on the stem 
barks of D. verrucosus discovered 9 compounds. The 
compound consists of 8 oligostilbenes and 1 phenolic 
compound. Fraction 2 attained laevifonol (3) (10 mg) 
and ε-viniferin (2) (6 mg), Fraction 3 found ampelopsin 
E (10) (9 mg), α-viniferin (6) (15 mg), and vaticanol B 
(13) (7 mg). In addition, fraction 4 found 
diptoindonesin E (14) (8 mg), while fraction 5 attained 
isohopeaphenol (12), (hopeaphenol) (13) (20 mg), and 
1 non-oligostilbenoid namely bergenin (16) (15 mg). 

Meanwhile, the extraction of D. cornutus 
successfully isolated 10 compounds consisting of 6 
oligostilbenoids, 3 catechins, and 1 coumarin. Fraction 2 
found scopoletin (17) (17 mg), davidiol A (8) (15 mg), 
stenophyllol B (9) (15 mg), and laevifonol (3) (40 mg). 
Additionally, fraction 3 attained ε-viniferin (2) (8 mg), 
fraction 4 attained ampelopsin F (4) (7 mg), and fraction 
5 yielded 4-O-methylgallocatechin (18) (15 mg), 4-O-
metylgallocatechin (19) (12 mg) and new compounds, 
which were 4-methoxy epigallocathechin-3-O-(3-
methyl) gallate (20) (15 mg) and hemsleyanol D (15) (15 
mg). 

Additionally, the D. crinitus extraction efficiently 
isolated 8 compounds, including 5 oligostilbenoids, 2 
terpenoids, and 1 phenolic compound. The D. crinitus 
extraction efficiently isolated 8 compounds, including 5 
oligostilbenoids, 2 terpenoids, and 1 phenolic 
compound. Fraction 2 attains β-sitosterol (21) (10 mg) 
and β-sitosterol glucoside (22) (13 mg). Meanwhile, 
fraction 3 found resveratrol (1) (10 mg) and ε-viniferin 
(2) (9 mg). In addition, fraction 4 successfully isolated 
vaticanol A (7) (7 mg), ampelopsin A (5) (10 mg), α-
viniferin (6) (7 mg), and bergenin (16) (8 mg). Fig. 1 
shows all the isolated compounds. 

■ RESULTS AND DISCUSSION 

In this study, 15 resveratrol oligomers from D. 
verrucosus, D. cornutus, and D. crinitus which consist of 
1 monomer (resveratrol), 4 dimers; [ε-viniferin (2), 
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laevifonol (3), ampelopsin A (5), ampelopsin F (4)], 5 
trimers; [α-viniferin (6), vaticanol A (7), davidiol A (8), 
stenophyllol B (9), ampelopsin E (10)] and 5 tetramers; 
[isohopeapenol (11), hopeapenol (12), vaticanol B (13), 
diptoindonesin E (14), hemsleyanol D (15)] have been 
isolated and identified (Fig. 1). 
Resveratrol (1), obtained as an amorphous white crystal. 
m.p.: 220–224 °C (dec.). [α]D: +100° (c 0.1, MeOH). UV 
(MeOH) λmax: 203, 229, 315 nm. 1H-NMR (acetone-d6, 
500 MHz) δH ppm: 7.40 (2H, d, J = 8.4, H-2a/6a), 6.83 (2H, 
d, J = 9.0, H-3a/5a), 7.02 (1H, d, J = 16.5, H-7a), 6.86 (1H, 
d, J = 16.5, H-8a), 6.54 (2H, d, J = 2.2, H-10a/14a), 6.27 
(1H, d, J = 2.0, H-12a).13C-NMR (125 MHz) δC ppm: 128.7 
(C-1a), 129.7 (C-2a/6a), 116.4 (C-3a/5a), 158.2 (C-4a), 
129.1 (C-7a), 126.8 (C-8a), 140.8 (C-9a), 105.7 (C-10a), 
159.4 (C-11a), 102.7(C-12a), 159.6 (C-13a). 
ε-Viniferin (2), obtained as a brownish viscous oil, MS 
m/z: 455 [MH]+. m.p.: 172–176 °C. [α]D

20: −44° (c 0.1 
MeOH). UV (MeOH) λmax: 203, 230, 324 nm. IR (KBr) 
νmax (cm−1): 3383 (OH), 1640, 1514, 1440 (C=C aromatic), 
and 832 (para-disubstituent). 1H-NMR (methanol-d4, 300 
MHz) δH ppm: 7.18 (2H, d, J = 8.7, H-2a/6a), 6.81 (2H, d, 
J = 8.7, H-3a/5a), 5.39 (1H, d, J = 6.6, H-7a), 4.35 (1H, d, J 
= 6.6, H-8a), 6.18 (2H, d, J = 1.8, H-10a/14a), 6.20 (1H, d, 
J = 2.1, H-12a), 7.07 (2H, d, J = 8.7, H-2b/6b), 6.68 (2H, d, 
J = 8.7, H-3b/5b), 6.87 (1H, d, J = 16.2, H-7b), 6.61 (1H, d, 
J = 16.2, H-8b), 6.27 (1H, d, J = 1.8, H-12b), 6.65 (1H, d, J 
= 1.8, H-14b). 13C-NMR (75 MHz) δC ppm: 132.8 (C-1a), 
127.8 (C-2a/6a), 115.3 (C-3a/5a), 158.7 (C-4a), 93.0 (C-
7a), 56.1 (C-8a), 146.6 (C-9a), 106.1 (C-10a), 160.0 (C-
11a), 101.2 (C-12a), 160.0 (C-13a), 106.1 (C-14a), 129.1 
(C-1b), 127.0 (C-2b/6b), 115.4 (C-3b/5b), 157.3 (C-4b), 
122.3 (C-7b), 129.2 (C-8b), 135.5 (C-9b), 118.9 (C-10b), 
161.6 (C-11b), 96.1 (C-12b), 161.6 (C-13b), 103.3 (C-
14b). 
Laevifonol (3), obtained as a white crystal, m.p.: 298–
300 °C. [α]D

20: −175° (c 0.1 MeOH). UV (MeOH) λmax: 
203, 226, 284 nm. IR (KBr) νmax (cm−1): 3364 (OH), 2913 
(C–H), 1614, 1587, 1516, 1454, 1440 (C=C aromatic) and 
835 (para-disubstituent), 1257 (aryl-O), 1789 (C=O). 1H-
NMR (methanol-d4, 300 MHz) δH ppm: 6.98 (2H, d, J = 
8.7, H-2a/6a), 6.7 7(2H, d, J = 8.7, H-3a/5a), 5.29 (1H, d, J 
= 10.8, H-7a), 3.29 (1H, d, J = 10.8, H-8a), 6.20 (1H, d, J = 

2.0, H-12a), 7.14 (1H, brs, H-14a), 6.77 (2H, d, J = 8.1, 
H-2b/6b), 6.77 (2H, d, J = 8.1, H-3b/5b), 5.06 (1H, d, J = 
7.5, H-7b), 3.29 (1H, d, J = 10.5, H-8b), 5.92 (2H, d, J = 
2.1, H-10b/14b), 6.16 (1H, t, J =2.1, H-12b), 4.41 (1H, 
brs, H-4), 4.21 (1H, m, H-5), 3.97 (1H, dd, J = 4.4, H-
6’). 13C-NMR (75 MHz) δC ppm: 128.3 (C-1a), 127.4 (C-
2a/6a), 115.2 (C-3a/5a), 157.5 (C-4a), 89.0 (C-7a), 55.2 
(C-8a), 127.5 (C-9a), 122.0 (C-10a), 160.4 (C-11a), 95.9 
(C-12a), 158.2 (C-13a), 109.8 (C-14a), 131.2 (C-1b), 
129.0 (C-2b/6b), 115.0 (C-3b/5b), 157.8 (C-4b), 93.4 (C-
7b), 55.3 (C-8b), 130.2 (C-9b), 131.1 (C-10b), 121.7 (C-
11b), 95.9 (C-12b), 157.9 (C-13b), 110.1 (C-14b). 
Ampelopsin F (4), obtained as white crystal, m.p.: 218–
220 °C. MS m/z: 455 [MH+]. [α]D

20: +60° (c 0.1 MeOH). 
UV (MeOH) λmax: 203, 226, 284 nm. IR (KBr) νmax 
(cm−1): 3364 (OH), 2913 (C–H), 1614, 1587, 1516, 1454, 
1440 (C=C aromatic) and 835 (para-disubstituent). 1H-
NMR (acetone-d6, 600 MHz) δH ppm: 7.09 (2H, d, J = 
8.4, H-2a/6a), 6.76 (2H, d, J = 8.4, H-3a/5a), 4.18 (1H, d, 
J = 1.5, H-7a), 3.35 (1H, brs, H-8a), 6.06 (1H, d, J = 2.4, 
H-12a), 6.54 (1H, d, J = 2.4, H-14a), 6.78 (2H, d, J = 8.4, 
H-2b/6b), 6.58 (2H, d, J = 8.4, H-3b/5b), 3.64 (1H, brs, 
H-7b), 4.12 (1H, brs, H-8b), 6.15 (1H, d, J = 2.1, H-12b), 
6.48 (1H, d, J = 2.4, H-14b). 13C-NMR (150 MHz) δC 
ppm: 138.5 (C-1a), 129.8 (C-2a/6a), 115.6 (C-3a/5a), 
156.3 (C-4a), 47.2 (C-7a), 58.4 (C-8a), 147.3 (C-9a), 
127.8 (C-10a), 153.3 (C-11a), 101.9 (C-12a), 158.7 (C-
13a), 104.1 (C-14a), 135.4 (C-1b), 129.7 (C-2b/6b), 115.7 
(C-3b/5b), 156.4 (C-4b), 50.5 (C-7b), 49.7 (C-8b), 147.2 
(C-9b), 113.4 (C-10b), 157.9 (C-11b), 101.9 (C-12b), 
157.3 (C-13b), 105.7 (C-14b). 
Ampelopsin A (5), obtained as a yellow crystal. MS m/z: 
469 [MH−]. m.p.: 218–220 °C. [α]D

20: −160° (c 0.1 MeOH). 
UV (MeOH) λmax: 203, 226, 284 nm. IR (KBr) νmax 
(cm−1): 3364 (OH), 2913 (C–H), 1614, 1587, 1516, 1454, 
1440 (C=C aromatic) and 835 (para-disubstituent). 1H-
NMR (acetone-d, 500 MHz) δH ppm: 7.11 (2H, d, J = 8.6, 
H-2a/6a), 6.75 (2H, d, J = 8.7, H-3a/5a), 5.75 (1H, d, J = 
11.5, H-7a), 4.15 (1H, brs, H-8a), 6.42 (1H, d, J = 2.3, H-
10a,), 6.22(1H, d, J = 2.3, H-12a), 6.89 (2H, d, J = 8.0, H-
2b/6b), 6.63 (2H, d, J = 8.8, H-3b/5b), 5.44 (1H, d, J = 4.6, 
H-7b), 5.40 (1H, d, J = 4.6, H-8b), 6.14 (1H, d, J = 2.0, H-
12b), 6.64  (1H, d, J = 2.0, H-14b).  13C-NMR (125 MHz)  



Indones. J. Chem., 2024, 24 (3), 672 - 690    

 

Liliwirianis Nawi et al. 
 

676 

 



Indones. J. Chem., 2024, 24 (3), 672 - 690    

 

Liliwirianis Nawi et al. 
 

677 

 



Indones. J. Chem., 2024, 24 (3), 672 - 690    

 

Liliwirianis Nawi et al. 
 

678 

 
Fig 1. Structure of compounds isolated from D. verrucosus, D. cornutus, and D. crinitus 

 
δC ppm: 132.7 (C-1a), 129.9 (C-2a/6a), 116.0 (C-3a/5a), 
158.5 (C-4a), 88.5 (C-7a), 49.6 (C-8a), 143.6 (C-9a), 118.4 
(C-10a), 157.3 (C-11a), 101.6 (C-12a), 158.9 (C-13a), 
105.6 (C-14a), 131.0 (C-1b), 128.8 (C-2b/6b), 115.4 (C-
3b/5b), 156.1 (C-4b), 43.9 (C-7b), 71.2 (C-8b), 140.5 (C-
9b), 118.9 (C-10b), 160.2 (C-11b), 97.1 (C-12b), 158.9 (C-
13b), 110.5 (C-14b). 
α-Viniferin (6), obtained as pale yellow, MS m/z: 677 
[MH−]. m.p.: 220–223 °C. [α]D

20: +60° (c 0.1 MeOH). UV 
(MeOH) λmax: 203, 226, 284 nm. IR (KBr) νmax (cm−1): 3393 
(OH), 1613, 1462, 1337 (C=C aromatic), and 831 (para-
disubstituent). 1H-NMR (acetone-d6, 300 MHz) δH ppm: 
7.02 (2H, d, J = 8.7, H-2a/6a), 6.71 (2H, d, J = 8.7, H-
3a/5a), 6.08 (1H, s, H-7a), 3.97(1H, brs, H-8a), 6.00 (1H, 
d, J = 2.1, H-12a), 6.23 (1H, d, J = 2.1, H-14a), 7.22 (2H, d, 

J = 8.7, H-2b/6b), 6.79 (2H, d, J = 8.7, H-3b/5b), 5.96 
(1H, d, J = 9.9, H-7b), 4.71 (1H, d, J = 9.9, H-8b). 6.73 
(1H, d, J = 2.1, H-12b), 6.25 (1H, d, J = 2.1, H-12b), 7.06 
(2H, d, J = 8.7, H-2c/6c), 6.80 (2H, d, J = 8.7, H-3c/5c), 
4.91 (1H, d, J = 6.3, H-7c), 4.61 (1H, d, J = 6.3, H-8c), 
6.60 (1H, d, J = 1.8, H-12c), 6.22 (1H, d, J = 2.1, H-14a), 
13C-NMR (75 MHz) δC ppm: 132.0 (C-1a), 128.1 (C-
2a/6a), 115.7 (C-3a/5a), 157.8 (C-4a), 86.4 (C-7a), 46.4 
(C-8a), 118.8 (C-9a), 141.2 (C-10a), 159.3 (C-11a), 108.5 
(C-12a), 161.5 (C-13a), 98.0 (C-14a), 132.2 (C-1b), 128.6 
(C-2b/6b), 116.1 (C-3b/5b), 158.2 (C-4b), 89.9 (C-7b), 
52.8 (C-8b), 120.9 (C-9b), 139.7 (C-10b), 159.34 (C-
11b), 106.2 (C-12b), 158.4 (C-13b), 96.8 (C-14b), 132.4 
(C-1c), 128.6 (C-2c/6c), 116.0 (C-3c/5c), 158.2 (C-4c), 
95.5 (C-7c), 55.6 (C-8c), 119.6 (C-9c), 138.6 (C-10c), 
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160.9 (C-11c), 105.7 (C-12c), 161.7 (C-13c), 96.8 (C-14c). 
Vaticanol A (7), obtained as a brown amorphous 
powder. MS m/z: 681 [MH−]. m.p.: 230–233 °C. [α]D

20: 
−90° (c 0.1 MeOH). UV (MeOH) λmax: 203, 226, 284 nm. 
IR (KBr) νmax (cm−1): 3418 (OH), 1614, 1515, 1455 (C=C 
aromatic) and 833 (para-disubstituent). 1H-NMR 
(methanol-d4, 300 MHz) δH ppm: 7.22 (2H, d, J = 8.7, H-
2a/6a), 6.82 (2H, d, J = 8.7, H-3a/5a), 6.15 (1H, d, J = 3.0, 
H-7a), 4.37 (1H, d, J = 3.0, H-8a), 5.97 (1H, d, J = 2.4, H-
12a), 6.48 (1H, d, J = 2.4, H-14a), 7.06 (2H, d, J = 8.7, H-
2b/6b), 6.61 (2H, d, J = 8.7, H-3b/5b), 5.10 (1H, d, J = 10.0, 
H-7b), 4.53 (1H, d, J = 6.6, H-8b), 6.27 (1H, brs, H-12b), 
6.50(2H, d, J = 8.7, H-2c/6c), 6.37 (2H, d, J = 8.7, H-3c/5c), 
3.62 (1H, d, J = 7.2, H-7c), 4.23 (1H, s, H-8c), 6.37 (1H, d, 
J = 2.1, H-10c), 6.24 (1H, t, J = 2.1, H-11c),  6.37 (1H, d, J 
= 2.1, H-12c). 13C-NMR (75 MHz) δC ppm: 133.7 (C-1a), 
126.8 (C-2a/6a), 115.1 (C-3a/5a), 154.9 (C-4a), 85.6 (C-
7a), 49.2 (C-8a), 144.0 (C-9a), 118.4 (C-10a), 156.9 (C-
11a), 100.3 (C-12a), 156.6 (C-13a), 101.1 (C-14a), 137.6 
(C-1b), 128.3 (C-2b/6b), 114.2 (C-3b/5b), 157.8 (C-4b), 
35.0 (C-7b), 46.8 (C-8b), 144.2 (C-9b), 118.9 (C-10b), 
157.8 (C-11b), 94.3 (C-12b), 157.8 (C-13b), 122.3 (C-
14b), 135.3 (C-1c), 128.8 (C-2c/6c), 113.9 (C-3c/5c), 154.8 
(C-4c), 63.8 (C-7c), 56.2 (C-8c), 146.6 (C-9c), 106.0 (C-
10c), 158.7 (C-11c), 99.8 (C-12c), 158.7 (C-13c), 106.0 (C-
14c). 
Davidiol A (8), obtained as a brown amorphous powder. 
MS m/z: 679 [MH−]. m.p.: 255–257 °C. [α]D

20: −275° (c 0.1 
MeOH). UV (MeOH) λmax: 203, 226, 284 nm. IR (KBr) 
νmax (cm−1): 3418 (OH), 1614, 1515, 1455 (C=C aromatic), 
and 833 (para-disubstituent). 1H-NMR (acetone-d6, 
300 MHz) δH ppm: 7.21 (2H, d, J = 8.7, H-2a/6a), 6.80 (2H, 
d, J = 8.7, H-3a/5a), 6.09 (1H, d, J = 3.0, H-7a), 4.42 (1H, 
d, J = 9.6, H-8a), 6.44 (1H, d, J = 2.1, H-12a), 6.57 (1H, d, 
J = 2.4, H-14a), 7.02 (2H, d, J = 8.7, H-2b/6b), 6.60 (2H, d, 
J = 8.7, H-3b/5b), 5.28 (1H, br s, H-7b), 4.27 (1H, d, J = 
11.4, H-8b). 6.04 (1H, s, H-12b), 6.74 (2H, d, J = 8.7, H-
2c/6c), 6.61 (2H, d, J = 8.7, H-3c/5c), 4.39 (1H, d, J = 9.3 
H-7c), 2.93 (1H, dd, J = 11.7, 9.9, H-8c), 6.43 (1H, d, J = 
2.4, H-10c), 6.19 (1H, t, J = 2.1, H-12c), 6.43 (1H, d, J = 
2.4, H-14c). 13C-NMR (75 MHz) δC ppm: 133.4 (C-1a), 
127.2 (C-2a/6a), 115.1 (C-3a/5a), 155.0 (C-4a), 85.0 (C-
7a), 49.6 (C-8a), 146.2 (C-9a), 117.0 (C-10a), 158.0 (C-

11a), 100.0 (C-12a), 157.2 (C-13a), 103.0 (C-14a), 136.6 
(C-1b), 128.7 (C-2b/6b), 114.4 (C-3b/5b), 157.3 (C-4b), 
35.7 (C-7b), 50.9 (C-8b), 142.4 (C-9b), 118.2 (C-10b), 
158.6 (C-11b), 95.0 (C-12b), 153.8 (C-13b), 121.5 (C-
14b), 133.5 (C-1c), 129.0 (C-2c/6c), 114.6 (C-3c/5c), 
157.2 (C-4c), 55.3 (C-7c), 66.6 (C-8c), 143.2 (C-9c), 
107.5 (C-10c), 158.5 (C-11c), 100.1 (C-12c), 158.7 (C-
13c), 107.3 (C-14c). 
Stenophyllol B (9), obtained as a brown amorphous 
powder. MS m/z: 679 [MH−], m.p.: 255–257 °C. [α]D

20: 
−20° (c 0.1 MeOH). UV (MeOH) λmax: 205, 228, 287 nm. 
IR (KBr) νmax (cm−1): 3418 (OH), 1616, 1544, 1455 (C=C 
aromatic), and 831 (para-disubstituent). 1H-NMR 
(acetone-d6, 300 MHz) δH ppm: 6.88 (2H, d, J = 8.7, H-
2a/6a), 6.77 (2H, d, J = 8.7, H-3a/5a), 5.84 (1H, d, J = 3.3, 
H-7a), 5.07 (1H, d, J = 3.3, H-8a), 6.31 (1H, d, J = 2.1, H-
12a), 6.25 (1H, d, J = 2.1, H-14a), 7.20 (2H, d, J = 8.4, H-
2b/6b), 6.66 (2H, d, J = 8.4, H-3b/5b), 4.73 (1H, d, J = 6.3, 
H-7b), 4.73 (1H, d, J = 6.3, H-8b), 6.79 (1H, s, H-14b), 
7.29 (2H, d, J = 8.1, H-2c/6c), 6.68 (2H, d, J = 8.1, H-
3c/5c), 5.35 (1H, d, J = 9.6 H-7c), 4.30 (1H, dd, J = 10.5, 
8.4, H-8c),  6.07 (1H, m, H-12c), 6.07 (1H, m, H-14c). 
13C-NMR (75 MHz) δC ppm: 135.5 (C-1a), 128.2 (C-
2a/6a), 116.9 (C-3a/5a), 158.7 (C-4a), 89.0 (C-7a), 53.5 
(C-8a), 142.2 (C-9a), 124.5 (C-10a), 157.5 (C-11a), 102.4 
(C-12a), 159.8 (C-13a), 107.8 (C-14a), 137.8 (C-1b), 
130.9 (C-2b/6b), 116.8 (C-3b/5b), 157.1 (C-4b), 52.8 (C-
7b), 57.4 (C-8b), 145.2 (C-9b), 121.4 (C-10b), 161.4 (C-
11b), 96.8 (C-12b), 160.1 (C-13b), 109.3 (C-14b), 140.6 
(C-1c), 130.8 (C-2c/6c), 116.8 (C-3c/5c), 157.2 (C-4c), 
48.2 (C-7c), 54.5 (C-8c), 151.8 (C-9c), 124.4 (C-10c), 
155.7 (C-11c), 100.1 (C-12c), 158.7 (C-13c), 107.3 (C-
14c). 
Ampelopsin E (10), obtained as a reddish yellow, MS 
m/z: 679 [M+]. m.p.: 180–182 °C. [α]D

20: −94° (c 0.1 
MeOH). UV (MeOH) λmax: 203, 230, 325 nm. IR (KBr) 
νmax (cm−1): 3367 (OH), 2947 (C–H aliphatic), 1655, 1452 
(C=C aromatic). 1H-NMR (methanol-d4, 300 MHz) δH 
ppm: 7.27 (2H, d, J = 8.4, H-2a/6a), 6.84 (2H, d, J = 8.4, 
H-3a/5a), 5.45 (1H, d, J = 4.8, H-7a), 4.53 (1H, d, J = 4.8 
H-8a), 6.26 (1H, d, J = 2.4, H-10a), 6.26 (1H, d, J = 2.4, 
H-10a),  6.23 (1H, t, J = 2.0, H-12a), 6.26 (1H, d, J = 2.4, 
H-14a), 6.62 (2H, d, J = 8.0, H-2b/6b), 6.59 (2H, d, J = 
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8.4, H-3b/5b), 6.63 (1H, d, J = 16.5, H-7b), 6.59 (1H, d, J = 
16.5, H-8b), 6.44 (1H, s, H-12b), 7.28 (2H, d, J = 8.5, H-
2c/6c), 6.87 (2H, d, J = 8.5, H-3c/5c), 5.45 (1H, d, J = 5.4, 
H-7c), 4.56 (1H, d, J = 4.8, H-8c), 6.23 (1H, d, J = 2.4, H-
10c), 6.23 (1H, t, J = 2.0, H-12c), 6.26 (1H, d, J = 2.0, H-
14c). 13C-NMR (75 MHz) δC ppm: 134.0 (C-1a), 128.6 (C-
2a/6a), 116.5 (C-3a/5a), 158.4 (C-4a), 94.1 (C-7a), 55.6 
(C-8a), 147.3 (C-9a), 107.0 (C-10a), 160.0 (C-11a), 102.14 
(C-12a), 160.0 (C-13a), 102.14 (C-14a), 133.7 (C-1b), 
127.9 (C-2b/6b), 115.9 (C-3b/5b), 158.3 (C-4b), 124.6 (C-
7b), 131.8 (C-8b), 130.2 (C-9b), 120.1 (C-10b), 162.5 (C-
11b), 91.3 (C-12b), 162.5 (C-13b), 120.1 (C-14b), 134.0 
(C-1c), 128.6 (C-2c/6c), 116.5 (C-3c/5c), 158.4 (C-4c), 
94.1 (C-7c), 55.6 (C-8c), 147.3 (C-9c), 107.0 (C-10c), 
160.0 (C-11c), 102.1 (C-12c), 160.0 (C-13c), 107.0 (C-
14c). 
Isohopeaphenol (11), obtained as a pale yellow. m.p.: 
272–275 °C. [α]D

20: −396° (c 0.1 MeOH). UV (MeOH) 
λmax: 203, 230, 284 nm. IR (KBr) νmax (cm−1): 3367 (OH), 
2947 (C–H aliphatic), 1655, 1452 (C=C aromatic). 1H-
NMR (acetone-d4, 300 MHz) δH ppm: 7.57 (2H, d, J = 8.7, 
H-2a/6a), 7.01 (2H, d, J = 8.7, H-3a/5a), 5.45 (1H, brd, J = 
9.9, H-7a), 5.45 (1H, brd, J = 9.9, H-8a), 7.85 (1H, brs, 11a-
OH), 6.39 (1H, d, J = 8.7, H-12a), 8.15 (1H, brs, 13a-OH), 
6.39 (1H, d, J = 8.7, H-12a), 8.15 (1H, brs, H-13a-OH), 
6.29 (1H, d, J = 2.4, H-14a), 6.39 (2H, d, J = 8.7, H-2b/6b), 
6.34 (2H, d, J = 8.7, H-3b/5b), 7.80 (1H, brs, H-4b-OH), 
5.16 (1H, d, J = 2.1, H-7b), 3.48 (1H, brs, H-8b), 5.85 (1H, 
d, J = 2.1, H-12b), 7.80 (1H, brs, H-13b-OH), 5.53 (1H, d, 
J = 2.1, H-14b). 13C-NMR (75 MHz) δC ppm: 132.9 (C-1a), 
129.7 (C-2a/6a), 115.7 (C-3a/5a), 158.3 (C-4a-OH), 92.6 
(C-7a), 52.9 (C-8a), 140.9 (C-9a), 117.2 (C-10a), 157.9 (C-
11a), 105.6 (C-12a), 156.3 (C-13a-OH), 106.2 (C-14a), 
136.6 (C-1b), 129.0 (C-2b/6b), 114.9 (C-3b/5b), 154.4 (C-
4b-OH), 42.5 (C-7b), 51.6 (C-8b), 139.9 (C-9b), 147.2 (C-
10b), 159.6 (C-11b), 94.3 (C-12b), 158.3 (C-13b-OH), 
110.4 (C-14b). 
Hopeaphenol (12), obtained as a pale yellow. m.p.: 272–
275 °C. [α]D

20: −396° (c 0.1 MeOH). UV (MeOH) λmax: 
203, 230, 284 nm. IR (KBr) νmax (cm−1): 3367 (OH), 2947 
(C–H aliphatic), 1655, 1452 (C=C aromatic). 1H-NMR 
(acetone-d4, 300 MHz) δH ppm: 7.15 (2H, d, J = 8.4, H-
2a/6a), 6.80 (2H, d, J = 8.4, H-3a/5a), 5.77 (1H, d, J = 

13.8,H-7a), 4.26 (1H, d, J = 12.3, H-8a), 6.56 (1H, d, J = 
2.4, H-12a), 6.31 (1H, d, J = 2.4, H-14a), 6.31 (1H, d, J = 
2.4, H-14a), 6.93 (2H, d, J = 8.4, H-2b/6b), 6.58 (2H, d, J 
= 8.4, H-3b/5b), 5.80 (1H, s, H-7b), 3.95 (1H, brs, H-8b), 
5.74 (1H, d, J = 2.1, H-12b), 5.16 (1H, d, J = 2.1, H-14b). 
13C-NMR (75 MHz) δC ppm: 128.3 (C-1a), 129.3 (C-
2a/6a), 114.9 (C-3a/5a), 157.7 (C-4a), 157.7 (C-7a), 87.3 
(C-8a), 48.9 (C-9a), 141.6 (C-10a), 120.3 (C-11a), 101.6 
(C-12a), 156.3 (C-13a), 105.6 (C-14a), 134.3 (C-1b), 
128.4 (C-2b/6b), 114.1 (C-3b/5b), 154.7 (C-4b), 40.1 (C-
7b), 51.6 (C-8b), 139.6 (C-9b), 117.9 (C-10b), 158.3 (C-
11b), 94.3 (C-12b), 156.3 (C-13b), 110.3 (C-14b). 
Vaticanol B (13), obtained as a brown amorphous 
powder. MS m/z: 905 [MH−]. m.p.: 205–207 °C. [α]D

20: 
−40° (c 0.1 MeOH). UV (MeOH) λmax: 203, 230, 284 nm. 
IR (KBr) νmax (cm−1): 3367 (OH), 2947 (C–H aliphatic), 
1655, 1452 (C=C aromatic). 1H-NMR (methanol-d4, 
500 MHz) δH ppm: 7.18 (2H, d, J = 8.5, H-2a/6a), 6.78 
(2H, d, J = 8.5, H-3a/5a), 5.72 (1H, d, J = 12.0, H-7a), 4.33 
(1H, d, J= 12.0, H-8a), 6.18 (1H, d, J = 2.0, H-12a), 6.05 
(1H, s, H-10a), 7.13 (2H, d, J = 8.5, H-2b/6b), 6.68 (2H, 
d, J = 8.5, H-3b/5b), 5.28 (1H, d, J = 5.5, H-7b), 3.15 (1H, 
d, J = 12.5, H-8b), 5.98 (1H, s, H-12b), 6.45 (2H, d, J = 
8.5, H-2c/6c), 6.49 (2H, d, J = 8.5, H-3c/5c), 4.08 (1H, t, 
J = 11.5, H-7c), 4.42 (1H, d, J = 10.5, H-8c), 6.19 (1H, s, 
H-12c), 6.44 (1H, d, J = 1.5, H-14c), 7.14 (2H, d, J = 8.5, 
H-2d/6d), 6.75 (2H, d, J = 8.5, H-3d/5d), 5.28 (1H, d, J = 
5.5, H-7d), 5.99 (2H, d, J = 2.5, H-10d/14d), 6.20 (1H, d, 
J = 2.0, H-12d).13C-NMR (125 MHz) δC ppm: 129.7 (C-
1a), 130.9 (C-2a/6a), 114.9 (C-3a/5a), 157.9 (C-4a), 89.6 
(C-7a), 49.3 (C-8a), 141.3 (C-9a), 124.3 (C-10a), 154.4 
(C-11a), 100.5 (C-12a), 156.9 (C-13a), 100.9 (C-14a), 
132.9 (C-1b), 129.4 (C-2b/6b), 113.8 (C-3b/5b), 154.7 
(C-4b), 35.8 (C-7b), 51.9 (C-8b), 147.2 (C-10b), 113.8 
(C-11b), 154.7 (C-12b), 35.8 (C-13b), 51.9 (C-8b), 147.2 
(C-9b), 113.8 (C-10b), 158.3 (C-11b), 94.3 (C-12b), 
154.0 (C-13b), 121.6 (C-14b), 130.9 (C-1c), 129.0 (C-
2c/6c), 114.2 (C-3c/5c), 155.3 (C-4c), 57.4 (C-7c), 49.3 
(C-8c), 140.7 (C-9c), 122.5 (C-10c), 160.8 (C-11c), 94.2 
(C-12c), 159.6 (C-13c), 104.4 (C-14c), 133.6 (C-1d), 
127.3 (C-2d/6d), 114.9 (C-3d/5d), 157.4 (C-4d), 89.6 (C-
7d), 56.5 (C-8d), 142.5 (C-9d), 106.1 (C-10d/14d), 160.4 
(C-11d/13d), 100.5 (C-12d). 
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Diptoindonesin E (14), obtained as a white amorphous 
powder. MS m/z: 903 [MH−]. m.p.: 233–235 °C. [α]D

20: 
−95° (c 0.1 MeOH). UV (MeOH) λmax: 205, 228, 325 nm. 
IR (KBr) νmax (cm−1): 3401 (OH), 2922 (C–H aliphatic), 
1655, 1452 (C=C aromatic). 1H-NMR (methanol-d4, 
300 MHz) δH ppm: 7.27 (2H, d, J = 8.7, H-2a/6a), 6.88 (2H, 
d, J = 8.7, H-3a/5a), 5.47 (1H, d, J = 12.0, H-7a), 4.69 (1H, 
d, J=3.9, H-8a), 6.26 (2H, d, J = 2.1, H-10a/14a), 6.19 (1H, 
t, J = 2.1, H-12a), 7.70 (2H, d, J = 2.1, H-2b/6b), 6.74 (2H, 
d, J = 8.5, H-3b/5b), 6.78 (1H, d, J = 5.5, H-7b), 6.70 (1H, 
d, J = 16.5, H-8b), 6.42 (1H, s, H-12b), 6.46 (2H, d, J = 8.7, 
H-2c/6c), 6.52 (2H, d, J = 8.7, H-3c/5c), 5.04 (1H, d, J = 
1.9, H-7c), 4.76 (1H, d, J = 1.9, H-8c), 6.23 (1H, d, J = 2.2, 
H-12c), 5.99 (1H, d, J = 2.1, H-14c), 7.50 (1H, d, J = 2.4, 
H-2d), 6.89 (1H, d, J = 8.7, H-5d), 7.23 (dd, J = 9.0, 2.1, H-
6d), 5.18 (1H, d, J = 1.5, H-7d), 4.79 (1H, d, J = 1.6, H-8d), 
5.95 (2H, brd, J = 2.1, H-10d/14d), 6.29 (1H, t, J = 2.1, H-
12d). 13C-NMR (75 MHz) δC ppm: 133.3 (C-1a), 126.8 (C-
2a/6a), 116.2 (C-3a/5a), 158.9 (C-4a), 93.6 (C-7a), 57.1 
(C-8a), 141.7 (C-9a), 106.0 (C-10a/14a), 159.4 (C-
11a/13a), 101.4 (C-12a), 131.5 (C-1b), 130.8 (C-2b/6b), 
126.2 (C-3b), 153.8 (C-4b), 116.9 (C-5b), 128.8 (C-6b), 
131.1 (C-7b), 126.9 (C-8b), 131.1 (C-9b), 115.9 (C-10b), 
162.5 (C-11b), 91.6 (C-12b), 161.9 (C-13b), 122.0 (C-
14b), 132.9 (C-1c), 126.9 (C-2c/6c), 115.6 (C-3c/5c), 157.4 
(C-4c), 90.6 (C-7c), 51.4 (C-8c), 145.6 (C-9c), 118.9 (C-
10c), 162.7 (C-11c), 95.9 (C-12c), 161.8 (C-13c), 107.2 (C-
14c), 135.6 (C-1d), 131.9 (C-2d/6d), 128.4 (C-3d), 156.8 
(C-4d), 115.5 (C-5d), 91.5 (C-7d), 55.2 (C-8d), 147.2 (C-
9d), 106.1 (C-10d/14d), 161.8 (C-11d/13d), 102.1 (C-
12d). 
Hemsleyanol D (15), obtained as a brownish-yellow 
solid. MS m/z: 905 [MH−]. m.p.: 280–282 °C. [α]D

20: +29° 
(c 0.1 MeOH). UV (MeOH) λmax: 203, 230, 284 nm. IR 
(KBr) νmax (cm−1): 3400 (OH), 2927 (C–H aliphatic), 1614, 
1512 (C=C aromatic). 1H-NMR (acetone-d6, 300 MHz) δH 
ppm: 7.22 (2H, d, J = 8.7, H-2a/6a), 6.78 (2H, d, J = 8.5, H-
3a/5a), 5.77 (1H, d, J = 11.7, H-7a), 4.41 (1H, d, J = 11.7, 
H-8a), 6.36 (1H, d, J = 2.4, H-12a), 6.12 (1H, d, J = H-10a), 
6.94 (2H, d, J = 8.7, H-2b/6b), 6.48 (2H, d, J = 8.7, H-
3b/5b), 5.29 (1H, d, J = 3.4, H-7b), 3.38 (1H, d, J = 10.9, 
H-8b), 6.02 (1H, s, H-12b), 6.72 (2H, d, J = 8.7, H-2c/6c), 
6.52 (2H, d, J = 8.7, H-3c/5c), 4.55 (1H, d, J = 10.2, H-7c), 

3.89 (1H, dd, J = 11.7, 10.8, H-8c), 6.23 (1H, d, J = 2.0, 
H-12c), 6.79 (1H, s, H-14c), 7.06 (2H, d, J = 8.4, H-
2d/6d), 6.82 (2H, d, J = 8.4, H-3d/5d), 4.92 (1H, d, J = 
1.5, H-7d), 3.50 (1H, brs, H-8d), 5.34 (2H, brs, H-
10d/14d), 6.07 (1H, t, J = 2.1 H-12d). 13C-NMR 
(75 MHz) δC ppm: 132.5 (C-1a), 129.9 (C-2a/6a), 115.3 
(C-3a/5a), 157.7 (C-4a), 89.6 (C-7a), 48.0 (C-8a), 140.7 
(C-9a), 124.0 (C-10a), 154.9 (C-11a), 100.6 (C-12a), 
155.9 (C-13a), 104.9 (C-14a), 133.9 (C-1b), 129.3 (C-
2b/6b), 115.3 (C-3b/5b), 157.1 (C-4b), 36.2 (C-7b), 56.5 
(C-8b), 142.1 (C-10b), 114.9 (C-11b), 158.4 (C-12b), 
153.8 (C-13b), 120.4 (C-14b), 132.5 (C-1c), 128.4 (C-
2c/6c), 114.7 (C-3c/5c), 155.8 (C-4c), 53.1 (C-7c), 57.4 
(C-8c), 140.1 (C-9c), 94.8 (C-10c), 162.2 (C-11c), 116.3 
(C-12c), 159.5 (C-13c), 104.9 (C-14c), 136.4 (C-1d), 
127.1 (C-2d/6d), 115.3 (C-3d/5d), 154.8 (C-4d), 93.1 (C-
7d), 60.1 (C-8d), 147.1 (C-9d), 105.5 (C-10d/14d), 158.1 
(C-11d/13d), 101.2 (C-12d). 
Bergenin (16), obtained as a white crystal. MS m/z: 327 
[MH−]. m.p.: 244–246 °C. [α]D

20: −30° (c 0.1 MeOH). UV 
(MeOH) λmax: 307, 274 nm. IR (KBr) νmax (cm−1): 3420 
(OH), 2927 (C–H aliphatic), 1614, 1512 (C=C aromatic), 
1703 (C=O), 2949 (C-H). 1H-NMR (acetone-d6, 
500 MHz) δH ppm: 4.00 (1H, dd, J = 10.0, 4.0, H-2), 3.45 
(1H, t, J = 9.0, H-3), 3.80 (1H, t, J = 9.0, H-4), 3.70 (1H, 
dd, J =9.5, 7.0, H-4A), 7.08 (1H, s, H=7), 4.94 (1H, d, J = 
10.8, H-10B), 3.65 (1H, m, H-11A), 4.10 (1H, dd, J = 9.5, 
4.0, H-11B), 3.89 (1H, s, OMe).13C-NMR (125 MHz) δC 
ppm: 81.5 (C-2), 71.9 (C-3), 75.7 (C-4), 83.0 (C-4A), 
165.8 (C-6), 119.52 (C-6A), 111.1 (C-7), 152.42 (C-8), 
142.3 (C-9), 149.5 (C-10), 117.3 (C-10A), 74.32 (C-10B), 
62.72 (C-11), 60.92 (C-Ome). 
Scopoletin (17), obtained as a white powder. m.p.: 171–
175 °C. UV (MeOH) λmax: 256, 342 nm. IR (KBr) νmax 
(cm−1): 3536 (OH), 2927 (C–H aliphatic), 1700, 1635 
(C=O conjugated), 1616, 1562, 1461 (C=C aromatic), 
1288, 1140 (C-O oxyaryl). 1H-NMR (methanol-d4, 
300 MHz) δH ppm: 6.20 (1H, d, J = 9.3, H-3), 7.84 (1H, 
d, J = 9.3, H-4), 7.12 (1H, s, H-5), 6.78 (1H, s, H-8), 3.92 
(3H, s, OCH3). 13C-NMR (75 MHz) δC ppm: 161.4 (C-2), 
113.3 (C-3), 144.7 (C-4), 112.1 (C-4a), 109.9 (C-5), 146.0 
(C-6), 151.9 (C-7), 103.8 (C-8), 151.2 (C-8a), 56.7 (C-
OMe). 
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4-O’-methylgallocatechin (18), obtained as an 
amorphous pale-yellow needle solid. MS m/z: 319 [MH−]. 
m.p.: 156–157 °C (dec.). UV (MeOH) λmax: 239, 274 nm. 
IR (KBr) νmax (cm−1): 3518, 1602 (C=C), and 1461. 1H-
NMR (methanol, 300 MHz) δH ppm: 4.59 (1H, 
overlapped, H-2), 3.99 (1H, m, H-3), 2.84 (1H, dd, J = 
16.2, 5.1, H-4α), 2.56 (1H, dd, J = 16.2, 7.8, H-4β), 5.95 
(1H, d, J = 2.1, H-6), 5.86 (1H, d, J = 2.1, H-8), 6.42 (1H, 
s, H-2), 6.42 (1H, s, H-6), 3.8 (3H, s, OMe). 13C-NMR 
(75 MHz) δC ppm: 81.2 (C-1), 67.4 (C-2), 26.8 (C-3), 99.3 
(C-4α/4β), 95.0 (C-5), 156.4 (C-6), 94.2 (C-1), 155.3 (C-
1), 135.3 (C-1), 106.0 (C-1), 150.2 (C-1), 135.2 (C-1), 
150.2 (C-1), 106.0 (C-1), 59.4 (C-1). 
4-O’-methylepigallocatechin (19), obtained as an 
amorphous pale-yellow needle solid. MS m/z: 639 [MH−]. 
m.p.: 156–157 °C (dec.). UV (MeOH) λmax: 239, 274 nm. 
IR (KBr) νmax (cm−1): 3518, 1602 (C=C), and 1461. 1H-
NMR (methanol, 500 MHz) δH ppm: 4.82 (1H, s, H-2), 
4.20 (1H, m, H-3), 2.73 (1H, dd, J = 16.5, 3.0, H-4α), 2.86 
(1H, dd, J = 16.5, 3.0, H-4β), 6.01 (1H, d, J = 2.0, H-6), 5.91 
(1H, d, J = 2.0, H-8), 6.58 (1H, s, H-2/6), 3.78 (3H, s, 
OMe). 13C-NMR (125 MHz) δC ppm: 9.2 (C-1), 66.8 (C-
2), 28.3 (C-4α/4β), 99.7 (C-4a), 156.6 (C-6), 96.1 (C-6), 
95.3 (C-8), 157.5 (C-8a), 136.2 (C-1), 107.0 (C-2/6), 
150.8 (C-3/5), 136.4 (C-4’), 60.5 (OMe). 
4-methoxy-epigallocatechin-3-O-(4-methyl) gallate 
(20), obtained as an amorphous light yellow solid. MS 
m/z: 485, 319, 274 [MH−]. m.p.: 192–195 °C. UV (MeOH) 
λmax: 224, 284 nm. IR (KBr) νmax (cm−1): 3423 (OH), 2935 
(C–H), 1054 (C–O). 1H-NMR (methanol-d4, 300 MHz) δH 
ppm: 5.1 (1H, s, H-2), 5.5 (1H, m, H-3), 2.98 (1H, dd, J = 
17.1, 4.5, H-4α), 3.06 (1H, dd, J = 17.1, 4.5, H-4β), 6.03 
(1H, d, J = 2.1, H-6), 5.99 (1H, d, J = 2.4, H-8), 6.56 (1H, 
s, H-2/6), 3.76 (3H, s, OMe), 7.16 (1H, s, H-2’/6’’, 7.16 
(1H, s, H-6’’) , 3.87 (1H, s, OMe). 13C-NMR (75 MHz) δC 
ppm: 76.8 (C-2), 69.4 (C-2), 26.7 (C-4α/4β), 97.9 (C-4a), 
155.6 (C-5/7), 95.3 (C-6), 94.8 (C-8a), 151.0 (C-1), 127.6 
(C-2/6), 105.6 (C-1), 147.4 (C-3/5), 134.5 (C-4), 59.5 
(OMe), 120.0 (C-1), 106.2 (C-2), 147.4 (C-3), 143.0 (C-
4), 144.4 (C-5), 106.2 (C-6), 166.2 (CO), 55.4 (OMe). 
β-sitosterol (21), obtained as a whitish solid. m.p: 287–
295 °C. UV (MeOH) λmax: 210 nm. IR (KBr) νmax (cm−1): 
3423 (OH), 2935 (C–H), 1054 (C–O). 1H-NMR 

(methanol-d4, 300 MHz) δH ppm: 3.53 (1H, tdd, J = 4.5, 
4.2, 3.8, H-2), 5.36 (1H, t, J = 6.4, H-5), 0.93 (1H, d, J 
=6.5, H-19), 0.84 (1H, t, J = 7.2, H-24), 0.83 (1H, d, J = 
6.4, H-26), 0.81 (1H, d, J = 6.4, H-27), 0.68 (1H, s, H-28), 
1.01 (1H, s, H-29). 13C-NMR (75 MHz) δC ppm: 37.2 
(C1), 31.6 (C2), 71.8 (C3), 42.3 (C4), 140.8 (C5), 121.7 
(C6), 31.9 (C7), 31.9 (C-8), 50.1 (C-9), 36.5 (C-10), 21.7 
(C-11), 39.8 (C-12), 42.3 (C-13), 56.8 (C-14), 24.3 (C-
15), 28.2 (C-16), 56.0 (C-17), 11.9 (C-18), 19.4 (C-19), 
36.1 (C-20), 19.8 (C-21), 33.9 (C-22), 26.1 (C-23), 45.8 
(C-24), 29.1 (C-25), 19.8 (C-26), 19.0 (C-27), 23.1 (C-
28), 12.0 (C-29). 
β-sitosterol-3-O-β-D-glucoside (22), obtained as a 
whitish solid. MS m/z: 545 [M-H2O]. m.p.: 287–295 °C. 
UV (MeOH) λmax: 210 nm. IR (KBr) νmax (cm−1): 3423 
(OH), 2935 (C–H), 1054 (C–O). 1H-NMR (methanol-d4, 
300 MHz) δH ppm: 3.87 (1H, m, H-3), 5.40 (1H, m, H-
6), 4.30 (1H, d, J = 7.7, H-1’), 3.1 (4H, m, H-2, H-3’, H-
4, H-5’), 4.90 (1H, dd, J = 10.6, 2.7, H-6a), 4.50 (1H, t, J 
= 5/7, H-6b). 13C-NMR (75 MHz) δC ppm: 36.4 (C-1), 
33.8 (C-2), 77.2 (C-3), 38.7 (C-4), 140.9 (C-5), 121.7 (C-
6), 31.8 (C-7), 31.9 (C-8), 50.1 (C-9), 36.7 (C-10), 20.2 
(C-11), 37.2 (C-12), 42.3 (C-13), 56.7 (C-14), 58.1 (C-
15), 28.3 (C-16), 55.9 (C-17), 12.2 (C-18), 19.6 (C-19), 
35.6 (C-20), 19.1 (C-21), 33.5 (C-22), 29.1 (C-23), 45.6 
(C-24), 29.8 (C-25), 19.4 (26), 23.2 (C-27), 24.7 (C-28), 
12.1 (C-29), 101.2 (C-1), 73.9 (C-2), 77.2 (C-3), 70.5 
(C-4), 77.4 (C-5), 61.5 (C-6). 

It is interesting to note that the polymerization of 
oligomeric resveratrol is significantly larger and more 
diversified in the tribe of Dipterocarpeae as compared to 
the tribe of Shoreae [42]. In Shoreae, this study 
discovered an inclination in the production of tetramer 
from monomer whereas Dipterocarpeae showed more 
variations from monomer up to octamer (Table 1). 
Matsuda et al. [43] indicated that the type of biogenetic 
of initial oligomerization of oligomeric resveratrol in 
Dipterocarpaceae and other families that produce 
oligomer resveratrol are different from each other. This 
supports the fact that a similar type of compound comes 
from the plant of the same tribe and family. 

Table 2 indicates resveratrol oligomers isolated in 
the Dipterocarpus genus. Currently, the polymerization 
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of resveratrol in the genus Dipterocarpus occurred from 
its monomer to tetramer. Dimer and tetramer resveratrol 
are the most abundant compounds. This is supported by 
a previous study [3] which disclosed that resveratrol 
tetramers and dimers are the principal oligomers isolated 
from Dipterocarpus. 

Table 3 tabulated the distribution of oligomer 
resveratrol isolated in Dipterocarpus study from the tribe 
of Dipterocarpeae. Dimer resveratrol, (−)-ε-viniferin (2), 
have been isolated in all Dipterocarpus. The presence of ε-
viniferin (2) has no chemotaxonomic significance as it is 
regarded as the general precursor for oligostilbenoids. 

Laevifonol (3) which is a unique oligostilbenoid formed 
from a condensation of (−)-ε-viniferin (2) and ascorbic 
acid highlights the relationship between Dipterocarpus 
and Vatica since previous research stated that these 
metabolites can only be found in Vatica umbonata and 
Vatica odorata in Dipterocarpaceae. Another dimer 
resveratrol, ampelopsin F (4) with the skeleton 
bicyclo[3.2.1]octane found in D. grandiflorus, U. 
borneensis, V. mangachapoi, and C. melanoxylin, 
indicated that these metabolites have a significant 
relationship with those genera. In addition, ampelopsin 
A (5)  with the skeleton of  benzofuran-cycloheptane has  

Table 1. Distribution of oligomer resveratrols in Dipterocarpeae tribe 
Species a b c d e f g h References 
D. grandiflorus - 5 1 6 - - - - [5] 
D. retusus - 1 2 - - - - - [4] 
D. hasseltii - 2 1 3 - - - - [4] 
D. alatus - - - 1 - - - - [11] 
D. intricatus - 1 - 1 - - - - [8] 
D. semivestitus - - 1 2 - - - - [9-10] 
D. verrucosus - 2 1 4 - - - - [6], present study 
D. crinitus 1 2 2  - - - - [7], present study 
D. cornutus - 3 2 1 - - - - present study 
V. rassak  2 1 3 4 - 3 1 - [44-47] 
V. pauciflora 2 8 10 8 - - 1 - [48-50] 
V. odorata - 1 2 2 - - - - [51] 
V. umbonata  - 3 2 2 - - - - [52] 
V. diospyroides - - - 2 - - - - [53] 
V. albiramis 1 7 - 6 - 1 - 1 [54] 
V. affinis - 1 - 1 - - - - [55] 
V. oblongifolia - - - 3 - - - - [56] 
V. mangachapoi - 10 5 6 - - - - [57] 
V. chinensis - - - 2 - - - - [58-59] 
V. lowii 1 - - - - - - - [50] 
V. bantamensis - - - 1 - - - - [60] 
U. borneensis 5 6 - 18 4 1 - 1 [61] 
A. laevis - - - 1 - - - - [62] 
A. marginata - 2 - 3 - - - - [63] 
A. thurifera - - - 3 - - - - [64] 
S. canaliculatus - 1 2 - - - - - [65] 
V. indica 1 2 - 11 - - - 1 [66] 
V. copallifera - - 3 - - - - - [67,68] 
C. lanceolatum 1 - 2 1 - - - - [69] 
C. melanoxylon - 5 4 - - - - - [70] 

*a = monomer, b = dimer, c = trimer d = tetramer, e = pentamer, f = hexamer, g = heptamer, h = octamer 
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Table 2. Oligomer resveratrol isolated from genus Dipterocarpus 
Compounds Type DG DH DR DA DI DS DV DC DCJ 
Resveratrol monomer  

  
   

  
√ 

ε-Viniferin dimer √ √ √  √  √ √ √ 
Ampelopsin A dimer √ 

  
   

  
√ 

Laevifonol dimer 
 

√ 
 

   √ √ 
 

Shorealactone dimer √ 
  

   
   

Ampelopsin F dimer √ 
  

   
 

√ 
 

Miyabenol C dimer √ 
  

   
   

α-Viniferin trimer √ √ √   √ √ 
 

√ 
Vaticanol A trimer 

  
√    

  
√ 

Stenophyllol B trimer 
   

   
 

√ 
 

Davidiol A trimer 
   

   
 

√ 
 

Ampelopsin E trimer √ 
  

   
   

Isohopeapenol tetramer 
   

   √ 
  

Hopeapenol tetramer √ √ 
 

  √ √ 
  

Vaticanol B tetramer √ √ √    √ 
  

Diptoindonesin E tetramer 
 

√ 
 

   √ 
  

Vaticanol C tetramer √ 
  

 √  
   

Hemsleyanol D tetramer √ 
  

  √ 
 

√ 
 

Grandiphenol A tetramer √ 
  

   
   

Grandiphenol B tetramer √ 
  

   
   

Vaticaffinol tetramer    √      
*DG = D. grandiflorus, DH = D. hasseltii, DR = D. retusus, DA=D. alatus, DI = D. intricatus, DS = D. semivestitus, DV = D. verrucosus, DC = D. 
crinitus, DCJ = D. cornutus 

Table 3. The distribution of oligomer resveratrol isolated in Dipterocarpus study in tribe Dipterocarpaceae 

Isolated compounds Dipterocarpaceae 
A B C D E F G H I 

Monomer          
(+)Resveratrol √  √       
Dimers          
(-)-ε-Viniferin √ √  √     √ 
(-)-Ampelopsin A √ √  √ √     
(-)-Laevifonol √ √    √   √ 
(-)-Ampelopsin F  √        
(+)-Ampelopsin F √  √   √    
Trimers          
(+)-α-Viniferin  √       √ 
(-)-Vaticanol A √ √    √    
(-)-Stenophyllol B √ √        
(-)-Davidiol A √ √        
(-)-Ampelopsin E         √ 
Tetramers          
(-)-Isohopeaphenol     √     
(-)-Hopeaphenol √ √       √ 
(-)-Vaticanol B √ √ √ √ √     
(+)-Diptoindonesin E  √        
Hemsleyanol D √ √        
Total 11 12 3 3 3 3 0 0 5 

*A-Vatica, B-Dipterocarpus, C-Upuna, D-Anisoptera, E-Vateria, F-Cotylelobium, G-Vateriopsis, H-Stemonoporus, I-Dryobalanops 
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been previously reported from D. grandiflorus, Anisoptera 
marginata, V. albiramis, V. mangachapoi, and Vateria 
indica. The occurrence of α-viniferin (6) as a trimer 
resveratrol in most of Dipterocarpus can be quantified, 
whereby this compound acts as a chemical marker for 
genus Dipterocarpus since these metabolites are not 
detected in other genera in the subtribe Dipterocarpeae. 
However, this metabolite is not found in D. cornutus. The 
occurrence of vaticanol A (7), which is also a trimer 
resveratrol indicated the significant relationship between 
Dipterocarpus and other previously isolated genera from 
V. rassak, followed by V. pauciflora, D. retusus, 
Cotylelobium melanoxylin, and V. mangachapoi. 

The significant findings in this study are the 
occurrence of resveratrol (1), davidiol A (8), stenophyllol 
B (9), ampelopsin E (10), and isohopeaphenol (12), which 
for the first time reported in Dipterocarpus. Resveratrol 
(1) acts as a monomer isolated from D. crinitus indicating 
another strong evidence that further correlates the 
relationship between Dipterocarpus and Vatica. The 
previous study only discussed the occurrence in V. rassak 
and U. borneensis. 

This finding supports the theory of polymerization 
of oligomer resveratrol which suggests that the starting 
material is resveratrol, which acts as a precursor 
compound. This is the new in contrast to the previous 
studies (D. grandiflorus, hasseltii, and retusus), 
biogenetically, that suggested the role of ɛ-viniferin as a 
precursor. The presence of davidiol A (8) for the first time 
in Dipterocarpus, as well as its occurrence in V. 
mangachapoi portrayed diversifying attributes of trimer 
resveratrol in Dipterocarpus. Meanwhile, the isolation of 
stenophyllol B (9) was also reported for the first time in 
Dipterocarpus, resulting in another strong and significant 
relationship between Dipterocarpus and Vatica. Based on 
previous research, this metabolite can only be found in V. 
umbonata and V. pauciflora. The presence of 
isohopeaphenol (11), tetramer oligostilbenoid, is the 
second occurrence in Dipterocarpaceae after V. indica. 

Diptoindonesin E (14), tetramer resveratrol, gives 
the second isolation after D. hasseltii, and until now, the 
compound has not yet been isolated in any genus of 
Dipterocarpaceae as well as in any family. The 13C-NMR 

result indicated that it is consistent with the structure of 
amurensin J, which was isolated from Vitis amurensis 
[71] from the Vitaceae family. However, the occurrence 
of the bridge at C-3b and C-3d of diptoindonesin E (14) 
shows that both compounds are different. Despite the 
small difference in the structure, the result provided 
other attributes in terms of the affinity of Dipterocarpus 
with Dryobalanops. This finding was supported by the 
isolation of flexuosol A for the first time from 
Dryobalanops lanceolata [72]. Amurensin J is a 
stereoisomer of flexuosol A. The isolation of 
diptoindonesin E (14) consequently produced a close 
structure with both compounds of amurensin J and 
flexuosol A. This is a convincing result to support the 
chemotaxonomy attributes of Dipterocarpus in 
Dipterocarpeae. The phylogenetic placement of 
Dipterocarpus and Dryobalanops remains unresolved. 
For that reason, this is an alarming call for further study 
to facilitate and enhance the holistic comprehension of 
phylogenetic and generic limitations of Dipterocarpaceae. 

Moreover, the first isolation of ampelopsin E (10) 
in Dipterocarpus resulted in a strong correlation between 
Dipterocarpus and Dryobalanops. Previous research only 
involves the isolation of ampelopsin E from 
Dryobalanops aromatica [73-74]. This reveals the strong 
chemotaxonomy correlation between the species in 
Dipterocarpaceae. Stereoisomers of isohopeahenol (12), 
hopeaphenol (13), were isolated and these metabolites 
are classified as a chemical marker in Dipterocarpacaeae 
[6], which was previously found in D. grandiflorus, D. 
hasseltii, Vateria indica, Anisoptera marginata, V. 
umbonate, and V. albiramis. 

The presence of vaticanol B (13), which is common 
and increasingly isolated in Dipterocarpaceae family 
shows the chemotaxonomically-correlated relationship 
among V. rassak, Vateria indica, V. pauciflora, A. 
marginata, V. umbonata, V. pauciflora, D. grandiflorius, 
U. borneensis, V. indica, V. albiramis, and D. hasseltii. 
The presence of hemsleyanol D (15), tetramer 
resveratrol which was isolated in D. cornutus also 
attained the relationship of chemotaxonomy 
characteristics between Dipterocarpus and Vatica. 
Previously, this metabolite was only isolated in D. 
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grandiflorus and from the other genus, namely V. 
pauciflora, and V. mangachapoi. 

This study also discovered the presence of several 
major non-oligomeric resveratrol. Bergenin (15) and 
scopoletin (16) are both coumarins and can be classified 
as chemical markers in Dipterocarpaceae, which can be 
found abundantly. The occurrence of terpenes, β-
sitosterol (17) and β-sitosterol glucoside (18) are also 
common in Dipterocarpaceae and most plant kingdoms. 
However, the presence of two flavonoids, 4-O-methyl 
gallocatechin (18) and 4-O-methyl epigallocatechin (19) 
are only reported in the family other than 
Dipterocarpaceae and the 4-methoxy-epigallocatechin-3-
O-(3-methyl) gallate (20), is firstly reported on the 
occurrence in the plant kingdom. 

The chemotaxonomic classification significantly 
showed that Dipterocarpus shares many isolated 
compounds similar to Vatica. Therefore, these data 
suggested that the significant chemotaxonomic relationship 
between Dipterocarpus and Vatica are closely related to 
each other. It is forecasted that Dipterocarpus will be 
inclined to produce octamer resveratrol, as well as Vatica. 
In addition, it also indicated in this research that the 
relationship of Dipteocarpus was supported by another 
report [1] in terms of its phylogenetic classification, which 
consists of Dipterocarpus, Anisoptera, Cotylelobium, 
Stemonoporus, Upuna, Vateria, Vateriopsis, and Vatica. 

■ CONCLUSION 

This research found that Dipterocarpaceae comprise 
oligomeric and non-oligomeric compounds that can be 
isolated via different chromatographic techniques. This is 
an imperative discovery as it will help to facilitate the 
investigation to quantify the relationship among the 
species and genera of Dipterocarpaceae. Additionally, the 
findings suggested that Dipterocarpus and Vatica are closely 
connected in terms of chemotaxonomic relationships. 
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