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Supplementary Data
This supplementary data is a part of a paper entitled “Influence of Hydrothermal Parameters on Photocatalytic
Activity of BiVO, for Degradation of Methylene Blue”.

Crystal Structure

Fig S1. Unit cell structure obtained from refinement and visualized by Vesta software

Analysis of XRD diffraction peak broadening

The Williamson-Hall method is a popular tool for analyzing the peak broadening phenomenon observed in X-
ray diffraction (XRD) patterns. It attributes the peak broadening to the synergistic effect of domain size and strain-
induced distortion [1]. This method is encapsulated in the following expression:
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where, D symbolizes the volume-weighted domain size and € represents the upper limit or maximum strain within the
lattice. The simplified integral breadth, denoted as [, is a product of peak breadth (f), diffraction angle (6), and X-ray
wavelength (A), expressed as Bcos(0)A". Similarly, d" is defined as 2sin(6)A™". Eq. (1), more commonly preferred to as
the Uniform Deformation Model (UDM), presumes isotropic strain distribution. The plot of p against d" provides the
information of uniform lattice strain, quantifiable through the slope, and the average domain size, determinable from
the y-intercept. However, the homogeneous or isotropic strain is not completely true for real crystals. Therefore,
modified versions of Williamson-Hall method have been introduced to better respond to realistic conditions, including
the Uniform Stress Deformation Model (USDM) and the Uniform Deformation Energy Density Model (UDEDM) [2].
The USDM is represented as follows.
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USDM, described by Eq. (2), considers anisotropic strain while it assumes that crystals experience uniform stress. In
this model, the uniform stress o is defined as the product of strain € and Youngs modulus E(hkl) specific to the
crystallographic plane (hkl). For monoclinic structures, the stationary value of Young’s modulus, E(hkl), can be
approximated through Eq. (3) [3];
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where y; is calculated by Eq. (4-6), Sj; is the elastic compliance given in Table S1, and n; are direction cosines determined
as Eq. (7).
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Table S1. The elastic compliance matrix S;; of monoclinic BiVO, (Si):Ci'jl, in which C; is retrieved from a previous study

[4])

Sij Sil SiZ Si3 Si4 SiS SiG

Sy 0.01471  0.00022  -0.0062 0 0.00694 0

S; 0.00022 0.01083 —-0.00369 0 0.00153 0

S5 —0.0062 -0.00369 0.01002 0 —-0.00476 0

Sy 0 0 0 0.02548 0 —0.00098
S5 0.00694  0.00153 —0.00476 0 0.02043 0

Sej 0 0 0 —0.00098 0 0.02751

The uniform stress in the USDM is determined from the slope of the plot of " against d'xE(hkl)™" and,
consequently, lattice strain. Regarding UDEDM, the assumption of this model is that the deformation energy u =
0.5¢’E(hKkl) is uniform across all crystal orientations. Therefore, the Eq. (1) is modified as below.
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The lattice strain can be identified via the energy density u, which is the slope of the plot of " against d'xE(hkl)™".
However, it is important to note that the implicit assumption of Williamson-Hall methods is that line profiles are
Lorentzian, which is unlikely to occur in practice. Instead, Halder-Wagner [5] proposed the integral breadth of line
profiles is Voigtian and is represented as:

*2
B =BuB+B’ ©)
in which the Lorentzian component (f.) and Gaussian component (Bc) are due solely to size effect (B.=D™") and strain
(Be=0.5nd’, where n=5¢), respectively. Therefore, Eq. (9) can be rewritten as below.
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The slope and the intercept of the linear model provide information about the domain size and the lattice strain,

respectively.

Table S2. Parameters of linear models used in the analysis of XRD peak broadening

Method Temperature (°C) Slope Intercept  Adj.R-squared
150 -2.29x10*  1.49x10° 0.144
UDM 200 -7.17x10*  2.12x10°° 0.600
220 5.20x10™*  2.81x107° 0.058
150 -1.87x10*  1.40x10° -0.019
USDM 200 -2.73x10™*  1.80x10° 0.025
220 -1.10x10*  3.10x10° 0.054
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Method Temperature (°C) Slope Intercept  Adj.R-squared
150 -1.72x10™*  1.40x107 0.010
UDEDM 200 -4.86x10™  1.90x107 0.110
220 -5.40x10™*  3.10x107° 0.015
150 1.56x107° -1.3x10°° 0.998
Halder-Wagner 200 2.12)(10:2 —3.10><10:: 0.998
220 3.23x10 -3.85x10 0.996
pH 1.0 1.82x107°  -2.01x10°° 0.999

Optical Properties

Bandgap energy is typically determined by Tauc plot extrapolation, which includes finding the intersection
between the linear model of absorption threshold and the photon energy axis. The following analysis estimates indirect
band gap energy of BiVO, using Tauc method with three distinct fitting ranges. Although these linear models have high
R? values, the fluctuation of the obtained band gap energies suggests that the errors could arise during calculation by
operators.
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Fig S2. The indirect bandgap energies are determined by linear regression with different fitting ranges
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Photocatalytic Activity
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Fig S3. Schematic of experimental apparatus of photocatalysis and spectrum of the light source. (1) Power supply; (2)
Simulated sunlight lamp; (3) Jacketed glass beaker; (4) Tested solution; (5) Magnetic bar; (6) Magnetic stirrer
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Fig S4. (a) Degradation plots of MB solution with different initial concentrations using the sample prepared at 200 °C,
pH 0.5, 10 h; (b) Linear correlation between the absorbance and the concentration of MB
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Fig S5. Self-decomposition of methylene blue under irradiation in the absence of photocatalyst
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Table S3. First-order kinetic rate constants of the degradation of MB using samples prepared at various hydrothermal

conditions
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Temperature (°C) Time (h)

pH k10*(min™?) R?

150 10 0.50 0.689 0.97
200 10 0.50 0.762 0.98
220 10 0.50 0.358 0.99
200 6 0.50 0.628 0.98
200 10 0.50 0.762 0.97
200 24 0.50 0.700 0.96
200 10 0.25 0.648 0.98
200 10 0.50 0.762 0.99
200 10 0.75 0.799 0.97
200 10 1.00 1.015 0.97
200 10 1.50 0.934 0.97
200 10 2.00 0.758 0.96
200 10 2.50 0.724 0.96
200 10 3.00 0.779 0.96
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Fig S6. First-order kinetic curve for the degradation of MB using samples synthesized at different (a) hydrothermal
temperature, (b) hydrothermal duration, (c) decay profiles for the degradation of MB using samples prepared at various

pH levels, (d) pH levels
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Table S4. Comparison in photocatalytic activity of recent BiVO,-based catalysts and other catalysts in the degradation
of MB

Kinetic rate

Photocatalyst Synthesis method of BiVO4 Light source Co Ref.
constant (k)
(HEC-PVA)/(Cu20@rGO)/BiVOs  Hydrothermal 100W lamp 10 ppm  1.270x107% min~! (6]
(at pH=11)
BiVO4-GO-PVDF Hydrothermal + Ultrasonic 500W lamp 20 ppm  5.300x10° min™  [7]
BiVOs-paint Calcination 2X15W Havells bulbs 5ppm  0.524x107? min™ (8]
Titanate-BiVOj thin film Electrophoretic deposition, chemical Xenon lamp 50 M 0.500%x1072 min™! [9]
solution growth (100mW/cm?)
BiVO4/BaSnO;@HNT Hydrothermal 200W LED lamp 20 ppm  1.15567 h! [10]
BiVO: (truncated square hexagonal Solvothermal 1000W Xenon lamp 20 ppm  0.380x102min™!  [11]
bipyramid) (A>420 nm)
BiVOj (leaf-like shape) Solvothermal 6 daylight LED 10W 15ppm 0.770x10? min™'  [12]
rGO/BiVO4 Co-precipitation + hydrothermal 54W Essential MO, Philips 3 ppm  0.670x10?min'  [13]
(pristine BiVOy)
1.440x1072 min™
(rGO/BiVO4)
BiVO.doped 6% Yb**, 3% Er**,3% Microwave hydrothermal 100W NIR lamp 20 ppm  0.276x1072 min™'  [14]
Tm3+
ZnFe>04/BiVO,4 Co-precipitation 500W halogen lamp 10 ppm 0.370x102 min™'  [15]
(pristine BiVO4)
1.320x1072 min™!
(ZnFe»04/BiVOs)
Bi2VOss Mechanochemical ball milling 2x15W Havells bulbs 5ppm  0.636x102 min™'  [16]
BaSno.s9Wo.0103 Co-precipitation 200W LED panel 5ppm  0.560x102min”  [17]
ZnO/activated carbon _ UV lamp 5ppm  3.490x10° min™'  [18]
BiVO, Hydrothermal 26W simulated sunlight 10ppm  1.015x10? min™'  This
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