From Synthesis to Application: Advances in Macrocyclic Complexes

https://doi.org/10.22146/ijc.101121

Nabaa Abbas(1), Ammar Jihad Alabdali(2), Mohammed Hussein Al-Mashhadani(3*), Zamzam Alhuwaymil(4), Mohammed Saeed Alyami(5), Sohad Abdulkhaleq Alshareef(6)

(1) Department of Chemistry, College of Science, Al-Nahrain University, Jadriya, Baghdad 64021, Iraq; Biotechnology Research Center, Al-Nahrain University, Baghdad 64021, Iraq
(2) Department of Chemistry, College of Science, Al-Nahrain University, Jadriya, Baghdad 64021, Iraq
(3) Department of Chemistry, College of Science, Al-Nahrain University, Jadriya, Baghdad 64021, Iraq
(4) Department of Chemistry, College of Science and Humanities at Al-Quway’iyah, Shaqra University, Shaqra 11911, Saudi Arabia
(5) Department of Science, King Abdulaziz Military College, Riyadh 14514, Saudi Arabia
(6) University College of Duba, University of Tabuk, Tabuk 71491, Saudi Arabia
(*) Corresponding Author

Abstract


Macrocyclic complexes, characterized by their large ring structure incorporating multiple donor atoms, have garnered significant attention due to their pivotal roles in both natural and synthetic systems. This review examines the synthetic methods of macrocyclic ligands and their metal complexes, highlighting their structural intricacies and coordination behaviors. The multifaceted applications of these complexes span various domains in pharmaceuticals as they enhance drug solubility and bioavailability; in catalysis, they facilitate oxidation reaction and water splitting processes; in sensing, calixarenes serve as selective ion and molecule detectors; and in biomedicine, certain macrocyclic compounds exhibit potential in targeting cancer stem cells. Despite these advancements, challenges persist, notably in achieving efficient macrocyclization and ensuring stability under diver’s conditions. Future directions emphasize the incorporation of stimuli-responsive supramolecular assemblies to enhance drug delivery mechanisms and therapeutic interventions. This comprehensive overview emphasizes the importance of macrocyclic complexes in advancing chemical science and their potential in addressing contemporary scientific challenges.

Keywords


macrocyclic complexes; catalysis; drug delivery; biomedical applications; supramolecules

Full Text:

Full Text PDF


References

[1] Melson, G.A., 1979, Coordination Chemistry of Macrocyclic Compounds, Plenum Press, New York, US.‏

[2] McNaught, A.D., and Wilkinson, A., 1977, Compendium of Chemical Terminology (IUPAC Chemical Data), 2nd Ed., Blackwell Science,‏ Oxford, UK.

[3] Sangwan, V., and Singh, D.P., 2019, Invitro DNA binding and antimicrobial studies of trivalent transition metal ion-based macrocyclic complexes, Vietnam J. Chem., 57 (5), 543–551.‏

[4] Voltarelli, V.A., Alves de Souza, R.W., Miyauchi, K., Hauser, C.J., and Otterbein, L.E., 2023, Heme: The lord of the iron ring, Antioxidants, 12 (5), 1074.‏

[5] Al-Mustafa, J., 1994, Heme Proteins: Structure and Function, Dissertation, Marquette University, Milwaukee, WI, US.‏

[6] Fotopoulou, E., 2021, A “Two Birds with One Stone” Approach to the Targeted Treatment and Imaging of Tumors: Vitamin B12-Functionalized Metallotheranostic Agents, Dissertation, National University of Ireland, Galway, Ireland.‏

[7] Kumar, H., Singh, A., Singh, P., Singh, A., and Pandey, J.K., 2022, Synthesis, characterization, and in-vitro (antimicrobial and antifungal) study of oxovanadium (IV) tetraazamacrocyclic complex, J. Pharm. Negat. Results, 13 (Special Issue 7), 5415–5427.‏

[8] Levin, J., 2014, Macrocycles in Drug Discovery, Royal Society of Chemistry, Cambridge, UK.

[9] Linstead, R.P., 1934, Phthalocyanines. Part I. A new type of synthetic colouring matters, J. Chem. Soc., 0, 1016–1017.‏

[10] Marrs, D.J., 1990, Macrocycles, Macrobicycles: A Study, Dissertation, Open University, Milton Keynes, UK.‏

[11] Radek, C., 1995, Studies on Macrocyclic Complexes, Dissertation, University of Edinburgh, Edinburgh, UK.‏

[12] Izatt, R.M., Nelson, D.P., Rytting, J.H., Haymore, B.L., and Christensen, J.J., 1971, Calorimetric study of the interaction in aqueous solution of several uni- and bivalent metal ions with the cyclic polyether dicyclohexyl-18-crown-6 at 10,25, and 40.deg., J. Am. Chem. Soc., 93 (7), 1619–1623.‏

[13] Vögtle, F., and Vögtle, F., 1992, “Wirt/Gast-Chemie mit Kationen und Anionen” in Supramolekulare Chemie: Eine Einführung, Vieweg+Teubner Verlag, Wiesbaden, Germany, 23–167.‏

[14] Moore, C., and Pressman, B.C., 1964, Mechanism of action of valinomycin on mitochondria, Biochem. Biophys. Res. Commun., 15 (6), 562–567.‏

[15] Pressman, B.C., 1965, Induced active transport of ions in mitochondria, Proc. Natl. Acad. Sci. U. S. A., 53 (5), 1076–1083.‏

[16] Pederson, C.J., 1988, The discovery of crown ethers, Science, 241 (4865), 536–540.‏

[17] Davis, F., and Higson, S., 2011, Macrocycles: Construction, Chemistry, and Nanotechnology Applications, John Wiley & Sons, Hoboken, NJ, US.

[18] Nangia, A.K., 2024, Supramolecular Synthons in Crystal Engineering of Pharmaceutical Properties, CRC Press, Boca Raton, FL, US.‏

[19] Shariff, S.N., Saravu, S., and Ramakrishna, D., 2022, “Schiff Base Complexes for Catalytic Application” in Schiff Base in Organic, Inorganic and Physical Chemistry, Eds. Akitsu, T., IntechOpen, Rijeka, Croatia.‏

[20] Jolly, W.L., 1964, Preparative Inorganic Reactions, ‎Interscience Publishers, New York, US.‏

[21] Niu, J., Liland, S.E., Yang, J., Rout, K.R., Ran, J., and Chen, D., 2019, Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane, Chem. Eng. J., 377, 119763.‏

[22] Pazderová, L., 2021, Complexes of Macrocyclic Ligands with Phosphonate and Phosphinate Penant Arms for Molecular Imaging, Dissertation, Charles University, Prague, Czech Republic.

[23] Bhat, A.S., 2021, Accessing Chemically Robust Amide Cages via the Pinnick Oxidation, Dissertation, Heidelberg University, Heidelberg, Baden-Württemberg, Germany.‏

[24] Lü, S., Wang, Z., and Zhu, S., 2022, Thiol-Yne click chemistry of acetylene-enabled macrocyclization, Nat. Commun., 13 (1), 5001.‏

[25] Lounsbury, K., 2022, New catalytic strategies for drug discovery, Dissertation, Université de Strasbourg, France.‏

[26] Girvin, Z.C., Andrews, M.K., Liu, X., and Gellman, S.H., 2019, Foldamer-templated catalysis of macrocycle formation, Science, 366 (6472), 1528–1531.‏

[27] Jones, C.D., Kershaw Cook, L.J., Marquez-Gamez, D., Luzyanin, K.V., Steed, J.W., and Slater, A.G., 2021, High-yielding flow synthesis of a macrocyclic molecular hinge, J. Am. Chem. Soc., 143 (19), 7553–7565.‏

[28] Sarma, D., Sultana, J., Hazarika, R., and Dutta, B., 2021, Basic ionic liquid catalyzed cycloaddition reactions for the synthesis of 1,2,3-triazoles, Adv. Org. Synth., 15 (5), 379.‏

[29] Tornøe, C.W., Christensen, C., and Meldal, M., 2002, Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Org. Chem., 67 (9), 3057–3064.‏

[30] Pal, A., Biswas, S., Sahoo, B., and Negishi, Y., 2025, Cu-nanoclusters as emerging catalyst in organic synthesis, Synlett, 36 (9), 1123–1129‏

[31] Kolb, H.C., Finn, M.G., and Sharpless, K.B., 2001, Click chemistry: Diverse chemical function from a few good reactions, Angew. Chem., Int. Ed., 40 (11), 2004–2021.

[32] Dadi, M., and Yasir, M., 2022, “Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric and Related Other Analysis” in Colorimetry, Eds. Samanta, A.K., IntechOpen, Rijeka, Croatia.‏

[33] Hernández-Negrete, O., Sotelo-Mundo, R.R., Esparza-Ponce, H.E., and Hernández-Paredes, J., 2021, Molecular structure, covalent and non-covalent interactions of an oxaborole derivative (L-PRO2F3PBA): FTIR, X-ray diffraction and QTAIM approach, J. Mol. Struct., 1243, 130911.‏

[34] Khalaf, W.M., and Al-Mashhadani, M.H., 2022, Synthesis and characterization of lanthanum oxide La2O3 net-like nanoparticles by new combustion method, Biointerface Res. Appl. Chem., 12 (3), 3066–3075.‏

[35] Yılmaz, V.T., and Icbudak, H., 1996, Thermal decomposition characteristics of ammonium hexachlorometallate (IV) complex salts of platinum metals, Thermochim. Acta, 276, 115–122.

[36] Fugu, M.B., Ellaby, R.J., O'Connor, H.M., Pitak, M.B., Klooster, W., Horton, P.N., Coles, S.J., Al-Mashhadani, M.H., Perepichka, I.F., Brechin, E.K., and Jones, L.F., 2019, Mono-and ditopic hydroxamate ligands towards discrete and extended network architectures, Dalton Trans., 48 (27), 10180–10190.‏

[37] Abed, R.N., Al-Mashhadani, M.H., Yousif, E., Hashim, H., Yusop, R.M., and Bufaroosha, M., 2024, Organosilane-doped PVC lattice thin film for optoelectronic applications, J. Opt., 53 (3), 2247–2261.‏

[38] Mingos, D.M.P., and Raithby, P.R., 2020, 21st Century Challenges in Chemical Crystallography II: Structural Correlations and Data Interpretation, Springer, Cham, Switzerland.‏

[39] Ren, J., 2019, Understanding the structure-performance relationship of carbon-based photocatalysts by soft X-ray spectroscopy, Dissertation, Freie Universität Berlin, Berlin, Germany.‏

[40] Bereta, T., Mondal, A., Ślepokura, K., Peng, Y., Powell, A.K., and Lisowski, J., 2019, Trinuclear and hexanuclear lanthanide(III) complexes of the chiral 3+3 macrocycle: X-ray crystal structures and magnetic properties, Inorg. Chem., 58 (7), 4201–4213.‏

[41] Passos, M.L., and Saraiva, M.L.M.F.S., 2019, Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies, Measurement, 135, 896–904.‏

[42] Franca, A.S., and Nollet, L.M., 2017, Spectroscopic Methods in Food Analysis, CRC Press, Boca Raton, FL, US.‏

[43] Leresche, F., Vialykh, E.A., and Rosario-Ortiz, F.L., 2022, Computational calculation of dissolved organic matter absorption spectra, Environ. Sci. Technol., 56 (1), 491–500.‏

[44] Mohammed, A., Al-Mashhadani, M.H., Ahmed, A.U., Kassim, M.M., Haddad, R.A., Rashad, A.A., Al-Dahhan, W.H., Ahmed, A., Salih, N., and Yousif, E., 2022, Evaluation the proficiency of irradiative poly(vinyl chloride) films in existence of di-and tri-organotin(IV) complexes, AIP Conf. Proc., 2394 (1), 040057.‏

[45] Chen, Y., Mastalerz, M., and Schimmelmann, A., 2012, Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy, Int. J. Coal Geol., 104, 22–33.

[46] Ibadi, F., Yousif, E., Al-Ani, A., Al-Mashhadani, M., Al-Saffar, A.Z., Basem, A., Bufaroosha, M., Hashim, H., Husain, A., Jawad, A.H., and Hairunisa, N., 2024, Organotin complexes with Schiff’s base ligands: Insights into their cytotoxic effects on lung cancer cells, J. Umm Al-Qura Univ. Appl. Sci., s43994-024-00170-w.‏

[47] Tsybizova, A., Tarábek, J., Buchta, M., Holý, P., and Schröder, D., 2012, Electrospray ionization mass spectrometric investigations of the complexation behavior of macrocyclic thiacrown ethers with bivalent transitional metals (Cu, Co, Ni and Zn), Rapid Commun. Mass Spectrom., 26 (19), 2287–2294.

[48] Tampieri, A., Szabó, M., Medina, F., and Gulyás, H., 2021, A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization, Phys. Sci. Rev., 6 (1), 20190086.‏

[49] Nakayasu, E.S., Gritsenko, M., Piehowski, P.D., Gao, Y., Orton, D.J., Schepmoes, A.A., Fillmore, T.L., Frohnert, B.I., Rewers, M., Krischer, J.P., Ansong, C., Suchy-Dicey, A.A., Evans-Molina, C., Qian, W.J., Webb-Robertson, B.M., and Metz, T.O., 2021, Tutorial: Best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation, Nat. Protoc., 16 (8), 3737–3760.

[50] Ghanbari, B., Gholamnezhad, P., and Hatami, M., 2014, Synthesis and thermogravimetric analysis of inclusion complexes of O2N2-donor Aza-crown macrocyclic ligands with [60]fullerene, J. Therm. Anal. Calorim., 118 (3), 1631–1637.‏

[51] Petasis, D.T., 2022, EPR Spectroscopy, Walter de Gruyter, Berlin, Germany.‏

[52] Chen, L., Duan, J., Du, P., Sun, W., Lai, B., and Liu, W., 2022, Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes, Water Res., 221, 118747.‏

[53] Medel, A., Ramírez, J.A., Cárdenas, J., Sirés, I., and Meas, Y., 2019, Evaluating the electrochemical and photoelectrochemical production of hydroxyl radical during electrocoagulation process, Sep. Purif. Technol., 208, 59–67.‏

[54] Augusto, O., Truzzi, D.R., and Linares, E., 2023, Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions, Redox Biochem. Chem., 5-6, 100009.‏

[55] Mahmood, S.S., Jamil, D.M., Hammad, F.J., Shaker, A.R., Alhuwaymil, Z., Alshareef, S.A., Al-Sudani, Z.S., and Al-Mashhadani, M.H., 2024, Spectroscopic determination of doxycycline by its reaction with Schiff base by ion pairing method, Chem. Afr., 7 (9), 5071–5085.

[56] Ahmad, S.M., Ibrahim, F.M., Adnan Hasan, A., Mawlood Mikhlif, H., Saad Jwad, R., Alhuwaymil, Z., Alshareef, S.A., Alyami, M.S., Al-Mashhadani, M.H., and Kommanaboyina, S., 2024, Fluorescent properties of chitosan-stabilized bisdemethoxycurcumin-silver nanoparticles: Synthesis and characterization, Results Chem., 10, 101719.

[57] Ahmed, A.S., Saleh, T.A.K., Mohammad, H.J., Hasan, A.A., Mahdi, S.A., Alhuwaymil, Z., Alshareef, S.A., Mahmood, A.T., and Al-Mashhadani, M.H., 2025, New generation photo-stabilizer strategies of poly(lactic acid), donor-acceptor-donor segment as a fluorescent additive, Radiat. Phys. Chem., 229, 112494.‏

[58] Shaalan, N.D., and Abdulwahhab, S., 2021, Synthesis, characterization, and biological activity study of some new metal complexes with Schiff’s bases derived from [Ο-vanillin] with [2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole], Egypt. J. Chem., 64 (8), 4059–4067.‏

[59] Sangwan, V., and Singh, D.P., 2019, In‐vitro DNA binding and antimicrobial studies of trivalent transition metal ion-based macrocyclic complexes, Vietnam J. Chem., 57 (5), 543–551.‏

[60] Yasir, A.F., and Jamel, H.O., 2023, Synthesis of a new DPTYEAP ligand and its complexes with their assessments on physical properties, antioxidant, and biological potential to treat breast cancer, Indones. J. Chem., 23 (3), 796–808.‏

[61] Sharma, V., Vashistha, V.K., and Das, D.K., 2020, Biological and electrochemical studies of macrocyclic complexes of iron and cobalt, Biointerface Res. Appl. Chem., 11 (1), 7393–7399.‏

[62] Singh, D.P., Malik, V., Kumar, R., and Kumar, K., 2010, Template synthesis of macrocyclic complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II): Spectroscopic, antibacterial, and antifungal studies, J. Serb. Chem. Soc., 75 (6), 763–772.‏

[63] Krstić, M.P., Petković, B.B., Milcić, M., Misić, D., and Santibanez, J.F., 2019, Synthesis, characterization, and biological study of new dinuclear zinc(II) and nickel(II) octaaza macrocyclic complexes, Maced. J. Chem. Chem. Eng., 38 (1), 1–11.‏

[64] Abass, A.M., Alabdullah, S.S.M., and Albassam, A.Z.M., 2022, Direct potentiometric evaluation of trazodone hydrochloride by novel ion selective electrodes, Anal. Bioanal. Electrochem., 14 (7), 667–679.‏

[65] Roca, M., Chen, K., and Pérez-Gálvez, A., 2024, “Chlorophylls” in Handbook on Natural Pigments in Food and Beverages (Second Edition), Eds. Schweiggert, R., Woodhead Publishing, Cambridge, UK, 193–226.

[66] Chen, S., Tang, W., Yin, H., Wang, Z., Zheng, K., Xie, L., Wang, X., So, S.K., Liu, F., and Zhu, X., 2019, Tuning electronic properties of molecular acceptor-π-porphyrin-π-acceptor donors via π-linkage structural engineering, Org. Electron., 73, 146–151.‏

[67] Holth, T.A.D., Hutt, O.E., and Georg, G.I., 2015, “Beckmann Rearrangements and Fragmentations in Organic Synthesis” in Molecular Rearrangements in Organic Synthesis, John Wiley & Sons, Inc., Hoboken, NJ, US, 111–150.‏

[68] Bräm, O., Cannizzo, A., and Chergui, M., 2019, Ultrafast broadband fluorescence up-conversion study of the electronic relaxation of metalloporphyrins, J. Phys. Chem. A, 123 (7), 1461–1468.‏

[69] Jiang, Y.B., and Sun, Z., 2019, Self-assembled porphyrin and macrocycle derivatives: From synthesis to function, MRS Bull., 44 (3), 167–171.

[70] Dudzik, T., Domański, I., and Makuch, S., 2024, The impact of photodynamic therapy on immune system in cancer – An update, Front. Immunol., 15, 1335920.‏

[71] Yawalkar, M.M., Menon, S., Swart, H.C., and Dhoble, S.J., 2022, “Fundamentals of photodynamic therapy” in Photophysics and Nanophysics in Therapeutics, Eds. Mahajan, N.M., Saini, A., Raut, N.A., and Dhoble, S.J., Elsevier, Amsterdam, Netherlands, 51–88.‏

[72] Dias, L.M., 2023, Comparative Analysis of Metallated Phthalocyanines for Photodynamic Therapy of Solid Tumors, Dissertation, University Beira Interior, Covilhã, Portugal.‏

[73] Linton, M.F., Yancey, P.G., Davies, S.S., Jerome, W.G., Linton, E.F., Song, W.L., Doran, A.C., and Vickers, K.C., 2019, The role of lipids and lipoproteins in atherosclerosis, Endotext, MDText.com, Inc., South Dartmouth, MA, US.‏

[74] Di, L., and Maiseyeu, A., 2021, Low-density lipoprotein nanomedicines: Mechanisms of targeting, biology, and theranostic potential, Drug Delivery, 28 (1), 408–421.‏

[75] Hassan, G.A., 2023, Effects of Dried Peppermint & Fenugreek Leaves Under Heat Stress of Broilers, Thesis, University of Kerbala, Iraq.‏

[76] Rombouts, J.L., Kranendonk, E.M.M., Regueira, A., Weissbrodt, D.G., Kleerebezem, R., and van Loosdrecht, M.C.M., 2020, Selecting for lactic acid producing and utilising bacteria in anaerobic enrichment cultures, Biotechnol. Bioeng., 117 (5), 1281–1293.‏

[77] Armijos-Capa, G., Tuninetti, J.S., Thomas, A.H., and Serrano, M.P., 2023, Enhancement of the Photosensitizing properties of 6-carboxypterin through covalent binding to the pH-responsive and biocompatible poly(allylamine hydrochloride), ACS Appl. Mater. Interfaces, 16 (3), 3922–3934.‏

[78] Chen, D., Yu, Q., Huang, X., Dai, H., Luo, T., Shao, J., Chen, P., Chen, J., Huang, W., and Dong, X., 2020, A highly efficient type I photosensitizer with robust vascular‐disruption activity for hypoxic‐and‐metastatic tumor specific photodynamic therapy, Small, 16 (23), 2001059.‏

[79] Yee, P.P., and Li, W., 2021, Tumor necrosis: A synergistic consequence of metabolic stress and inflammation, Bioessays, 43 (7), 2100029.‏

[80] Dutta, A., Mahapatra, M., Mitra, M., Banerjee, A., Ghosh, N.N., Chattopadhyay, P.K., Maiti, D.K., and Singha, N.R., 2021, Nonconventional biocompatible macromolecular AEEgens for sensitive detections and removals of Cu(II) and Fe(III): N and/or O donor (s) selective coordinations of metal ions, Sens. Actuators, B, 331, 129386.‏

[81] Xu, K., Xu, N., Zhang, B., Tang, W., Ding, Y., and Hu, A., 2020, Gadolinium complexes of macrocyclic diethylenetriamine-N-oxide pentaacetic acid-bisamide as highly stable MRI contrast agents with high relaxivity, Dalton Trans., 49 (26), 8927–8932.‏

[82] Gupta, S., 2023, Magnetic phenomena in equiatomic ternary rare earth compounds, Handb. Magn. Mater., 32, 1–103.‏

[83] Zhao, P., Tang, D., Xie, J., and Zhang, C., 2024, “Magnetism and Magnetic Materials” in Magnetic Levitation: Innovation of Density-Based Applications, Springer Nature Singapore,‏ Singapore, 1–15.

[84] Nikmanesh, H., Jaberolansar, E., Kameli, P., Varzaneh, A.G., Mehrabi, M., and Rostami, M., 2022, Structural and magnetic properties of CoFe2O4 ferrite nanoparticles doped by gadolinium, Nanotechnology, 33 (4), 045704.‏

[85] Costelloe, C.M., Amini, B., and Madewell, J.E., 2020, Risks, and benefits of gadolinium-based contrast-enhanced MRI, Semin. Ultrasound, CT MRI, 41 (2), 170–182.‏

[86] He, Q., Vargas-Zúñiga, G.I., Kim, S.H., Kim, S.K., and Sessler, J.L., 2019, Macrocycles as ion pair receptors, Chem. Rev., 119 (17), 9753–9835.

[87] Weller, M., Weller, M.T., Overton, T., Rourke, J., and Armstrong, F., 2014, Inorganic Chemistry, Oxford University Press, Oxford, UK.‏

[88] Savić, N.D., Petković, B.B., Vojnovic, S., Mojicevic, M., Wadepohl, H., Olaifa, K., Marsili, E., Nikodinovic-Runic, J., Djuran, M.I., and Glišić, B.Đ., 2020, Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes, Dalton Trans., 49 (31), 10880–10894.‏

[89] Kovács, A., 2023, Metal-ligand bonding in bispidine chelate complexes for radiopharmaceutical applications, Struct. Chem., 34 (1), 5–15.‏

[90] Wang, H., Ma, K., Zhang, T., Liu, P., Han, Y., and Gao, H.Y., 2025, Conformational selectivity and chiral self-assembly structures of crown ethers on metal surfaces, ACS Nano, 19 (1), 1611–1618.‏

[91] Aljohani, M.S., Alnoman, R.B., Alharbi, H.Y., Monier, M., and Youssef, I., 2025, Design and application of ion-imprinted chelating polymer for selective adsorption of silver ion, React. Funct. Polym., 208, 106162.‏

[92] Yang, J., Yuan, S., Wang, S., Yang, M., Shen, B., Zhang, Q., Zhang, Z., Wang, F., Xu, L., and Wang, Z., 2020, Density functional theory study on the effect of sodium on the adsorption of NO on a char surface, Energy Fuels, 34 (7), 8726–8731.‏

[93] Deli, D., 2010, Novel Approach for Selective Removal of Radionuclides by Stimuli-Responsive Gel Beads Carrying Aza-Crown Ethers, Dissertation, The University of Manchester, UK.‏

[94] Alagga, A.A., Pellegrini, M.V., and Gupta, V., 2024, “Drug Absorption” in StatPearls, StatPearls Publishing: Treasure Island, FL, US.‏

[95] Rashidinejad, A., Marze, S., and Singh, H., 2021, “Lipid Digestion and Bioaccessibility of Lipid-Soluble Compounds” in Bioaccessibility and Digestibility of Lipids from Food, Eds. Grundy, M.M.L., and Wilde, P.J., Springer International Publishing, Cham, Switzerland, 171–203.‏

[96] El-Shalakany, H.H., Ramadan, R.M., and Sayed, M.A., 2024, New bivalent metal chelates based on an NO-donor Schiff base ligand: Synthesis, structural characterization, DFT simulation, biological evaluation, and molecular docking analysis, Inorg. Chem. Commun., 159, 111826.‏

[97] Dhuri, A., Kanp, T., Sarma, A.V.S., Nair, R., Paul, P., Sharma, B., Munagalasetty, S., Bhandari, V., and Singh, P.K., 2025, Fabrication of amorphous solid dispersion of Entacapone for enhanced solubility and dissolution rate: Morphology, solid state characterization, in silico molecular docking studies, J. Mol. Struct., 1324, 140851.‏

[98] Sripetch, S., Prajapati, M., and Loftsson, T., 2022, Cyclodextrins and drug membrane permeation: Thermodynamic considerations, J. Pharm. Sci., 111 (9), 2571–2580.‏

[99] Amiri, S., and Amiri, S., 2017, Cyclodextrins: properties and industrial applications, John Wiley & Sons, Hoboken, NJ, US.

[100] Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., and Donnelly, R.F., 2018, Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications, J. Funct. Biomater., 9 (1), 13.

[101] Volkova, T.V., and Perlovich, G.L., 2020, Comparative analysis of solubilization and complexation characteristics for new antifungal compound with cyclodextrins. Impact of cyclodextrins on distribution process, Eur. J. Pharm. Sci., 154, 105531.‏

[102] Shende, V.S., Saptal, V.B., and Bhanage, B.M., 2019, Recent advances utilized in the recycling of homogeneous catalysis, Chem. Rec., 19 (9), 2022–2043.

[103] Maglio, O., Nastri, F., and Lombardi, A., 2012, “Structural and Functional Aspects of Metal Binding Sites in Natural and Designed Metalloproteins” in Ionic Interactions in Natural and Synthetic Macromolecules, Wiley, Hoboken, New Jersey, US, 361–450.‏

[104] Viertl, W., Pann, J., Pehn, R., Roithmeyer, H., Bendig, M., Rodríguez-Villalón, A., Bereiter, R., Heiderscheid, M., Müller, T., Zhao, X., Hofer, T.S., Thompson, M.E., Shi, S., and Brueggeller, P., 2019, Performance of enhanced DuBois type water reduction catalysts (WRC) in artificial photosynthesis–effects of various proton relays during catalysis, Faraday Discuss., 215, 141–161.‏

[105] Zhai, N., Wen, Z., Chen, X., Wei, A., Sha, M., Fu, J., Liu, Y., Zhong, J., and Sun, X., 2020, Blue energy collection toward all‐hours self‐powered chemical energy conversion, Adv. Energy Mater., 10 (33), 2001041.‏

[106] Osvaldová, M., and Potkány, M., 2022, “Economic principles and possibilities of using recycled material based on wood–plastic–rubber” in Proceedings of Crisis Management and Safety Foresight in Forest-based Sector and SMES Operating in Global Environment, International association for economics, management, marketing, quality and human resources in forestry and forest based industry – WoodEMA, Zagreb, Croatia, 299.‏

[107] Hoffmann, P., 2019, The Forever Fuel: The Story of Hydrogen, Routledge, Abingdon, Oxfordshire, UK.‏

[108] Lucarini, F., and Ruggi, A., 2018, Heptacoordinate Co(II) catalyst for light-driven hydrogen production in fully aqueous medium, Chimia, 72 (4), 203.‏

[109] Guérineau, V., Rollet, M., Viel, S., Lepoittevin, B., Costa, L., Saint-Aguet, P., Laurent, R., Roger, P., Gigmes, D., Martini, C., and Huc, V., 2019, The synthesis and characterization of giant calixarenes, Nat. Commun., 10 (1), 113.‏

[110] Abdelhamid, H.N., 2025, “Chromatography for gas–liquid–solid in separation sciences” in Advances in Separation Sciences, Eds. Ingole, P.G., and Hussain, C.M., Elsevier, Amsterdam, Netherlands, 137–151.‏

[111] Kadhim, A.J., and Shaalan, N., 2024, Synthesis, characterization, biological, and antioxidant activity of new metal ion complexes with Schiff base derived from 2-hydroxybenzohydrazide, Indones. J. Chem., 24 (6), 1851–1860.‏

[112] Hussein, K.A., Shaalan, N., Lafta, A.K., and Al Akeedi, J.M., 2024, Preparation, characterization, and biological activity of La(III), Nd(III), Er(III), Gd(III), and Dy(III) complexes with Schiff base resulted from reaction of 4-antipyrinecarboxaldehyde and 2-aminobenzothiazole, Indones. J. Chem., 24 (2), 358–369.‏

[113] Masoumifeshani, E., Chojecki, M., Rutkowska-Zbik, D., and Korona, T., 2022, Association complexes of calix[6] arenes with amino acids explained by energy-partitioning methods, Molecules, 27 (22), 7938.‏

[114] Hilal, T.A.A., and Kareem, I.K., 2025, Synthesis of some metal complexes with new heterocyclic ligand (5-(((2-(3-(1H-indol-3-yl)acryloyl)phenyl)amino)methylene)-2-thiooxodihydropyrimidine-4,6(1H,5H)-dione) and their biological effectiveness as antioxidant and anti-cancer, Indones. J. Chem., 25 (1), 60–75.

[115] Alrabiah, H., Ali, E.A., Alsalahi, R.A., Attwa, M.W., and Mostafa, G.A.E., 2023, Fabrication and applications of potentiometric membrane sensors based on γ-cyclodextrin and calixarene as ionophores for the determination of a histamine H1-receptor antagonist: Fexofenadine, Polymers, 15 (13), 2808.‏

[116] Fang, J., Orobator, O.N., Olelewe, C., Passeri, G., Singh, K., Awuah, S.G., and Suntharalingam, K., 2024, A breast cancer stem active cobalt(III)‐cyclam complex containing flufenamic acid with immunogenic potential, Angew. Chem., Int. Ed., 63 (6), e202317940.‏

[117] Abo-Ghalia, M.H., Moustafa, G.O., Amr, A.E.G.E., Naglah, A.M., Elsayed, E.A., and Bakheit, A.H., 2020, Anticancer activities of newly synthesized chiral macrocyclic heptapeptide candidates, Molecules, 25 (5), 1253.‏

[118] Rani, S., Aslam, S., Irfan, A., Mateev, E., Al-Hussain, S.A., and Zaki, M.E.A., 2024, “From Rings to Remedies: Investigating the Structure-activity Relationship of Macrocyclic Anticancer Agents” in Heterocyclic Chemistry - New Perspectives, Eds. Ali, R, IntechOpen, Rijeka, Croatia.‏

[119] Sangouard, G., 2022, Generating Macrocyclic Inhibitors of Protein-Protein Interactions, Dissertation, École Polytechnique Fédérale de Lausanne, Switzerland.‏

[120] Zakurdaeva, O.A., Kuchkina, I.O., Kurkin, T.S., and Nesterov, S. V., 2023, Two-stage thermal decomposition of 18-crown-6 and dicyclohexano-18-crown-6 complexes with alkaline earth metal halides as evidence for non-equivalence of macrocycle symmetry, J. Therm. Anal. Calorim., 148 (21), 11641–11651.‏

[121] Maier, M.E., 2015, Design and synthesis of analogues of natural products, Org. Biomol. Chem., 13 (19), 5302–5343.‏

[122] Khanna, S., 2020, “Applications of Nanotechnology in Diverse Fields of Supramolecules, Green Chemistry, and Biomedical Chemistry: A Very Comprehensive Review” in Natural Products Chemistry, Eds. Volova, T.G., Mahapatra, D.K., Khanna, S., and Haghi, A.K., Apple Academic Press, Palm Bay, FL, US, 41–77.‏

[123] Abdullah, M.M., Al-Samarrai, E.T.A., Al-Mashhadani, M.H., Alhuwaymil, Z., Alshareef, S.A., and Bouaziz, M., 2024, Determination of candesartan and amlodipine using ion pair and cloud point methods, Results Chem., 9, 101630.

[124] Abdulhameed, Z.A., and Alabdali, A.J., 2023. Synthesis, characterization and antimicrobial evolution of new bi-α-amino nitrile compounds, Al-Nahrain J. Sci., 26 (4), 21–27.

[125] Hussein, A.O., Abbas, R.A., Al-Mousway, Z.A., and Aboud, N.A.A., 2019, Synthesis and characterization of 6-(4-acetylpheylazo)-3-aminobenzoic acid complexes for some transition metals, J. Global Pharma Technol., 11 (3), 221–229.



DOI: https://doi.org/10.22146/ijc.101121

Article Metrics

Abstract views : 4919 | views : 2077


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.