Innovative High-Speed Homogenizer Approach for Synthesizing PVDF-GO Membranes from Recycled Battery Graphite
Arifina Febriasari(1*), Ferry Ferdiansyah(2), Shafa Marwa Salsabila(3), Muhammad Ridwan(4), Muhammad Bagas Adhistya Mahardika(5), Hilyati Hilyati(6), Wisnu Arfian Anditya Sudjarwo(7), Nina Arlofa(8), Supriyadi Supriyadi(9), Jose Luis Toca-Herrera(10), Sutrasno Kartohardjono(11)
(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(5) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(6) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(7) Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
(8) Department of Chemical Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(9) Department of Industrial Engineering, Faculty of Engineering, Universitas Serang Raya, Jl. Serang-Cilegon Km. 5, Banten 42162, Indonesia
(10) Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
(11) Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
(*) Corresponding Author
Abstract
Keywords
References
[1] Gupta, N.K., 2024, Battery waste-derived functional materials for the capture and removal of harmful gases, Environ. Sci.: Adv., 3 (8), 1087–1096.
[2] Dutta, T., Kim, K.H., Deep, A., Szulejko, J.E., Vellingiri, K., Kumar, S., Kwon, E.E., and Yun, S.T., 2018, Recovery of nanomaterials from battery and electronic wastes: A new paradigm of environmental waste management, Renewable Sustainable Energy Rev., 82, 3694–3704.
[3] Zhao, Y., Pohl, O., Bhatt, A.I., Collis, G.E., Mahon, P.J., Rüther, T., and Hollenkamp, A.F., 2021, A review on battery market trends, second-life reuse, and recycling, Sustainable Chem., 2 (1), 167–205.
[4] Azam, M.G., Kabir, M.H., Shaikh, M.A.A., Ahmed, S., Mahmud, M., and Yasmin, S., 2022, A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery, J. Water Process Eng., 46, 102597.
[5] Nauman Javed, R.M., Al-Othman, A., Tawalbeh, M., and Olabi, A.G., 2022, Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications, Renewable Sustainable Energy Rev., 168, 112836.
[6] Smith, A.T., LaChance, A.M., Zeng, S., Liu, B., and Sun, L., 2019, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci., 1 (1), 31–47.
[7] Khan, Z.U., Kausar, A., Ullah, H., Badshah, A., and Khan, W.U., 2016, A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques, J. Plast. Film Sheeting, 32 (4), 336–379.
[8] Qu, H., Huang, L., Han, Z., Wang, Y., Zhang, Z., Wang, Y., Chang, Q., Wei, N., Kipper, M.J., and Tang, J., 2021, A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications, J. Porous Mater., 28 (6), 1837–1865.
[9] Alam, S.N., Sharma, N., and Kumar, L., 2017, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 6 (1), 1–18.
[10] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M., 2010, Improved synthesis of graphene oxide, ACS Nano, 4 (8), 4806–4814.
[11] Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., and Yao, J., 2008, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C, 112 (22), 8192–8195.
[12] Chen, J., Yao, B., Li, C., and Shi, G., 2013, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, 225–229.
[13] Wu, L., Zhang, X., Wang, T., Du, C., and Yang, C., 2019, Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide, Chem. Eng. Res. Des., 141, 492–501.
[14] Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., and Wang, X., 2017, Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection, J. Colloid Interface Sci., 504, 429–439.
[15] Zhu, J., Wang, J., Hou, J., Zhang, Y., Liu, J., and Van der Bruggen, B., 2017, Graphene-based antimicrobial polymeric membranes: A review, J. Mater. Chem. A, 5 (15), 6776–6793.
[16] Al-Maliki, R.M., Alsalhy, Q.F., Al-Jubouri, S., Salih, I.K., AbdulRazak, A.A., Shehab, M.A., Németh, Z., and Hernadi, K., 2022, Classification of nanomaterials and the effect of graphene oxide (GO) and recently developed nanoparticles on the ultrafiltration membrane and their applications: A review, Membranes, 12 (11), 1043.
[17] Febriasari, A., Suhartini, M., Rahmawati, R., Hotimah, B., Anggarini, N.H., Yunus, A.L., Hermana, R.F., Deswita, D., Silvianti, F., Maniar, D., Loos, K., Fahira, A., Permatasari, I.P., and Kartohardjono, S., 2024, Enhancing the CO2/CH4 separation properties of cellulose acetate membranes using polyethylene glycol methyl ether acrylate radiation grafting, J. Polym. Environ., 32 (10), 4855–4868.
[18] Febriasari, A., Huriya, H., Ananto, A.H., Suhartini, M., and Kartohardjono, S., 2021, Polysulfone–polyvinyl pyrrolidone blend polymer composite membranes for batik industrial wastewater treatment, Membranes, 11 (1), 66.
[19] Purnawan, I., Febriasari, A., Setyaputra, B., Yolandini, T.T., Windriyo, M.J., Karamah, E.F., and Kartohardjono, S., 2020, Combined process of ozonation and membrane processes to treat wastewater from batik industry, IOP Conf. Ser.: Earth Environ. Sci., 442, 012003.
[20] Kornienko, N.E., Naumenko, A.P., and Kulikov, L.M., 2020, Observation of graphite-like and diamond-like nanostructures in the Raman spectra of natural and synthesized MoS2 crystals with small carbon additives, Phys. Chem. Solid State, 21 (4), 598–620.
[21] Whelan, P., 2001, Raman Microscopy Studies of Carbon Particles from Diesel Particulate Matter (DPM) and Coal Dust, Dissertation, Materials Research Institute, Sheffield Hallam University, UK.
[22] Zubair, A., 2011, Raman Spectra and Optical Absorption Analyses of Carboneous Films Deposited from C60 in Nitrogen Environment by Pulsed Laser Deposition, Thesis, Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Bangladesh.
[23] Pareek, S., Jain, D., Shrivastava, R., Dam, S., Hussain, S., and Behera, D., 2019, Tunable degree of oxidation in graphene oxide: Cost effective synthesis, characterization and process optimization, Mater. Res. Express, 6 (8), 085625.
[24] Habte, A.T., and Ayele, D.W., 2019, Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters, Adv. Mater. Sci. Eng., 2019 (1), 5058163.
[25] Nebol'sin, V.A., Galstyan, V., and Silina, Y.E., 2020, Graphene oxide and its chemical nature: Multi-stage interactions between the oxygen and graphene, Surf. Interfaces, 21, 100763.
[26] De Silva, K.K.H., Huang, H.H., Joshi, R., and Yoshimura, M., 2020, Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide, Carbon, 166, 74–90.
[27] Zondlo, J.W., 2012, “Graphite: Structure, properties, and applications” in Graphite, Graphene, and Their Polymer Nanocomposites, Eds. Mukhopadhyay, P., and Gupta, R.K., CRC Press, Boca Raton. FL, US, 1–58.
[28] Suhaimin, N.S., Hanifah, M.F.R., Azhar, M., Jaafar, J., Aziz, M., Ismail, A.F., Othman, M.H.D., Rahman, M.A., Aziz, F., Yusof, N., and Mohamud, R., 2022, The evolution of oxygen-functional groups of graphene oxide as a function of oxidation degree, Mater. Chem. Phys., 278, 125629.
[29] Yadav, N., and Lochab, B., 2019, A comparative study of graphene oxide: Hummers, intermediate and improved method, FlatChem, 13, 40–49.
[30] Mavukkandy, M.O., Bilad, M.R., Giwa, A., Hasan, S.W., and Arafat, H.A., 2016, Leaching of PVP from PVDF/PVP blend membranes: Impacts on membrane structure and fouling in membrane bioreactors, J. Mater. Sci., 51 (9), 4328–4341.
[31] Beygmohammdi, F., Nourizadeh Kazerouni, H., Jafarzadeh, Y., Hazrati, H., and Yegani, R., 2020, Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system, Chem. Eng. Res. Des., 154, 232–240.
[32] Haridass, R., Sabu, A., Augustin, N., Annamalai, P.K., and Brahmadesam Thoopul Srinivasa Raghava, R., 2024, Effect of polyvinylpyrrolidone on the structure development, electrical, thermal, and wetting properties of polyvinylidene fluoride-expanded graphite nanocomposites, ACS Omega, 9 (1), 178–195.
[33] Nascimben Santos, E., Fazekas, Á., Hodúr, C., László, Z., Beszédes, S., Scheres Firak, D., Gyulavári, T., Hernádi, K., Arthanareeswaran, G., and Veréb, G., 2021, Statistical analysis of synthesis parameters to fabricate PVDF/PVP/TiO2 membranes via phase-inversion with enhanced filtration performance and photocatalytic properties, Polymers, 14 (1), 113.
[34] Wang, Z., Chen, Z., Chang, J., Shen, J., Kang, J., Yang, L., and Chen, Q., 2015, A novel cementitious microfiltration membrane: Mechanisms of pore formation and properties for water permeation, RSC Adv., 5 (1), 99–108.
[35] Zhang, W.H., Yin, M.J., Zhao, Q., Jin, C.G., Wang, N., Ji, S., Ritt, C.L., Elimelech, M., and An, Q.F., 2021, Graphene oxide membranes with stable porous structure for ultrafast water transport, Nat. Nanotechnol., 16 (3), 337–343.
[36] Zhang, M., Liao, B., Zhou, X., He, Y., Hong, H., Lin, H., and Chen, J., 2015, Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor, Bioresour. Technol., 175, 59–67.
[37] Sundaran, S.P., Reshmi, C.R., Sagitha, P., Manaf, O., and Sujith, A., 2019, Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water, J. Environ. Manage., 240, 494–503.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.










