The X-Ray Crystallography Evidence of Selective Co-Crystallization Between [AuI6AgI3CuII3]3+ Chiral Metallo-Supramolecular Complex and Λ‒[Co(EDTA)] Isomer

https://doi.org/10.22146/ijc.105741

Benny Wahyudianto(1*), Tatsuhiro Kojima(2), Nobuto Yoshinari(3), Takumi Konno(4)

(1) Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
(2) Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan; Department of Applied Chemistry, Kobe City College of Technology, Kobe 651-2194, Japan
(3) Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
(4) Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
(*) Corresponding Author

Abstract


Co-crystalization is a beneficial method to combine two molecules possessing different charges into a single crystal form. Here, we coincidentally crystallized 12-nuclear complex cation of [AuI6AgI3CuII3(tdme)2(D-pen)6]3+ (D-pen2− = D-penicillaminate, tdme = 1,1,1-tris(diphenylphosphinomethyl)ethane), [AuI6AgI3CuII3]3+ and [Co(EDTA)] (EDTA = ethylenediaminetetraacetate) complex anion. The complex salt was obtained from a mixed reaction solution of [AuI6AgI3CuII3](TFA)3 (TFA = trifluoroacetate) and rac-K[Co(EDTA)] through a slow evaporation process. Single crystal X-ray diffraction analysis indicated that a new hybrid complex [{Au6Ag3Cu3}{Co(EDTA)}](TFA)2 (1), which contains only the Λ configurational isomer of [Co(EDTA)] through the Cu−O coordination bond.

Keywords


single crystal X-ray diffraction; hybrid complex; chirality

Full Text:

Full Text PDF


References

[1] Cherukavada, S., Kaur, R., and Guru Row, T.N., 2016, Co-crystallization and small molecule crystal form diversity: From pharmaceutical to materials applications, CrystEngComm, 18 (4), 8528−8555.

[2] Raheem Thayyil, A., Juturu, T., Nayak, S., and Kamath, S., 2020, Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications, Adv. Pharm. Bull., 10 (2), 203–212.

[3] Chen, X., Li, S., Xu, Q., Chen, Z., Lin, S., Yan, Z., Chen, J., Li, H., and Zheng, H., 2022, Selective co-crystallization separation of sucrose-6-acetate from complicated sucrose acylation system and facile removal of co-former: Process optimizations and mechanisms, Sep. Purif. Technol., 301, 122027.

[4] Chen, H., Xia, L., and Li, G., 2024, Recent progress of chiral metal–organic frameworks in enantioselective separation and detection, Microchim. Acta, 191 (11), 640.

[5] Yoneda, H., 1984, Mechanism of chromatographic separation of optically active metal complexes, J. Chromatogr. A, 313, 59−91.

[6] Sechi, B., Cossu, S., and Peluso, P., 2024, Enantioseparation of organometallic compounds and metal complexes by liquid chromatographic techniques. A review, J. Chromatogr. Open, 6, 100147.

[7] Lin, R.B., Xiang, S., Zhou, W., and Chen, B., 2020, Microporous metal-organic framework materials for gas separation, Chem, 6 (2), 337−363.

[8] Hanprasit, S., Yoshinari, N., Saito, D., Kato, M., and Konno, T., 2020, Homoleptic versus heteroleptic trinuclear systems with mixed L-cysteinate and D-penicillaminate regulated by a diphosphine linker, Dalton Trans., 49 (11), 3503−3509.

[9] Simon, N.S., Graczyk, D., Stitch, M., Auville, A., Stadler, V., and Quinn, S.J., 2025, Chiral resolution of transition metal polypyridyl complexes via HPLC as a gateway to enantiopure DNA targeting probes, Eur. J. Inorg. Chem., 28 (11), e202400836.

[10] Borchardt-Setter, K.A., and Yu, L., 2023, Assessing the potential for chiral separation by crystallization using crystal energies, Cryst. Growth Des., 23 (5) 3615–3622.

[11] Niu, X., Zhao, R., Liu, Y., Yuan, M., Zhao, H., Li, H., Yang, X., Xu, H., and Wang, K., 2023, Adaptive host–guest chiral recognition in nanoarchitectonics with biomimetic MOF mimicking DNA, J. Mater. Chem. A, 11 (43), 23376−23386.

[12] Yoshizawa, M., Tamura, M., and Fujita, M., 2007, Chirality enrichment through the heterorecognition of enantiomers in an achiral coordination host, Angew. Chem., Int. Ed., 46 (21), 3874−3876.

[13] Lee, P.S., Yuan, H.Q., Yoshinari, N., Igashira-Kamiyama, A., and Konno, T., 2016, Difference in chiral recognition behavior between AgI3MIII2 and AuI3MIII2 (M = Co, Rh) anionic complexes with L-cysteinate, Chem. Lett., 7 (45), 740−742.

[14] Huang, J., and Ballester, P., 2025, A bimolecular diels–alder reaction mediated by inclusion in a polar bis-calix[4]pyrrole octa-imine cage, J. Am. Chem. Soc., 147 (16), 13962–13972.

[15] Yang, Y., Ronson, T.K., Hou, D., Zheng, J., Jahović, I., Luo, K.H., and Nitschke, J.R., 2023, Hetero-Diels–Alder reaction between singlet oxygen and anthracene drives integrative cage self-sorting, J. Am. Chem. Soc., 145 (35), 19164−19170.

[16] Wang, C.Y., Ma, L., Wang, C.C., Wang, P., Gutierrez, L., and Zheng, W., 2022, Light-response adsorption and desorption behaviors of metal–organic frameworks, Environ. Funct. Mater., 1 (1), 49−66.

[17] Muthukumaran, M.K., Govindaraj, M., Kogularasu, S., Sriram, B., Raja, B.K., Wang, S.F., Chang-Chien, G.P., and Selvi J, A., 2025, Recent advances in metal-organic frameworks for electrochemical sensing applications, Talanta Open, 11, 100396.

[18] Uno, M., Kojima, T., Kuwamura, N., Yoshinari, N., and Konno, T., 2021, Racemic tartrate/malate anions combine with racemic complex cations to form optically active ionic crystals, Chem. - Eur. J., 27 (32), 8358−8364.

[19] Lerdwiriyanupap, T., Belletti, G., Tinnemans, P., Meekes, H., Rutjes, F.P.J.T., Vlieg, E., and Flood, A.E., 2021, Combining diastereomeric resolution and viedma ripening by using a racemic resolving agent, Eur. J. Org. Chem., 44, 5975−5980.

[20] Engwerda, A.H., van Schayik, P., Jagtenberg, H., Meekes, H., Rutjes, F.P., and Vlieg, E., 2018, Deracemization of a racemic compound by using tailor-made additives, Chem. Eur. J., 24, 2863−2867.

[21] Gassensmith, J.J., Furukawa, H., Smaldone, R.A., Forgan, R.S., Botros, Y.Y., Yaghi, O.M., and Stoddart, J.F., 2011, Strong and reversible binding of carbon dioxide in a green metal–organic framework, J. Am. Chem. Soc., 133 (39), 15312–15315.

[22] Yang, M., Chang, M., Yan, T., and Liu, D., 2022, A nickel-based metal-organic framework for efficient SF6/N2 separation with record SF6 uptake and SF6/N2 selectivity, Sep. Purif. Technol., 295, 121340.

[23] Rui, L., Xu, D., Liu, R., Zhou, J., and Ma, X., 2025, Metal–organic frameworks for NH3 adsorption and separation, Nanoscale, 17 (22), 13561–13580.

[24] Lin, J., Ho, W., Qin, X., Leung, C.F., Au, V.K.M., and Lee, S., 2022, Metal–organic frameworks for NOx adsorption and their applications in separation, sensing, catalysis, and biology, Small, 18 (13), 2105484.

[25] Brandt, P., Nuhnen, A., Lange, M., Möllmer, J., Weingart, O., and Janiak, C., 2019, Metal–organic frameworks with potential application for SO2 separation and flue gas desulfurization, ACS Appl. Mater. Interfaces, 11 (19), 17350–17358.

[26] Hao, H.G., Zhao, Y.F., Chen, D.M., Yu, J.M., Tan, K., Ma, S., Chabal, Y., Zhang, Z.M., Dou, J.M., Xiao, Z.H., Day, G., Zhou, H.C., and Lu, T.B., 2018, Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal−organic framework for the purification of C2H4, Angew. Chem., Int. Ed., 57 (49), 16067−16071.

[27] Wu, X., Zhang, H., Zuo, S., Dong, J., Li, Y., Zhang, J., and Han, Y., 2021, Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts, Nano-Micro Lett., 13 (1), 136.

[28] Imanishi, K., Wahyudianto, B., Kojima, T., Yoshinari, N., and Konno, T., 2020, A 116-nuclear metallosupramolecular cage-of-cage showing multistep single-crystal-to-single-crystal transformation, Chem. - Eur. J., 26 (8), 1827−1833.

[29] Wahyudianto, B., Imanishi, K., Kojima, T., Yoshinari, N., and Konno, T., 2021, Intermediate snapshots of a 116-nuclear metallo-supramolecular cage-of-cage in a homogeneous single-crystal-to-single-crystal transformation, Chem. Commun., 57 (49), 6090−6093.

[30] Takeda, H., Kojima, T., Yoshinari, N., and Konno, T., 2021, A mesoporous ionic solid with 272 AuI6AgI3CuII3 complex cations in a super huge crystal lattice, Chem. Sci., 12 (33), 11045−11055.

[31] Kojima, T., Takeda, H., Kuwamura, N., and Konno, T., 2021, A pseudorotaxane system containing γ-cyclodextrin formed via chiral recognition with an AuI6AgI3CuII3 molecular cap, Chem. - Eur. J., 27 (64), 15981−15985.

[32] Mitsuhashi, R., and Mikuriya, M., 2016, Synthesis and crystal structure of potassium ethylenediaminetetraacetato-cobaltate(III), X-ray Struct. Anal. Online, 32, 5−6.

[33] Kawaguchi, S., Takemoto, M., Osaka, K., Nishibori, E., Moriyoshi, C., Kubota, Y., Kuroiwa, Y., and Sugimoto, K., 2017, High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8, Rev. Sci. Instrum., 88 (8), 085111.

[34] Sheldrick, G.N., 2015, Crystal Structure Refinement with SHELXL, Acta Crystallogr., Sect. C: Struct. Chem., 71 (1), 3–8.

[35] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., 2009, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 42 (2), 339–341.



DOI: https://doi.org/10.22146/ijc.105741

Article Metrics

Abstract views : 702 | views : 348


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.