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Abstrak 

Convolutional neural network (CNN) merupakan model baru di bidang pengenalan 

objek. Dikhususkan untuk input data yang bertipe spatial, CNN memiliki layer khusus, yaitu 

layer konvolusi dan layer pooling yang memungkinkan proses pembelajaran fitur secara 

hierarki dari data. Untuk pengenalan karakter tulisan tangan secara offline, seperti pengenalan 

karakter pada database MNIST, CNN menunjukkan performa yang lebih baik jika dibandingkan 

dengan model ataupun metode yang lain. Dengan memanfaatkan keunggulan CNN tersebut, 

dalam penelitian ini telah dikembangkan sebuah perangkat lunak dengan fitur pengolahan citra 

dan modul CNN untuk pengenalan karakter tulisan tangan Aksara Jawa. Perangkat lunak yang 

dikembangkan memanfaatkan deteksi kontur dan deteksi tepi Canny menggunakan pustaka 

OpenCV terhadap citra karakter Aksara Jawa untuk proses segmentasi. Modul CNN 

selanjutnya melakukan proses klasifikasi terhadap citra yang telah disegmentasi ke dalam 20 

kelas. Untuk evaluasi, kinerja CNN dibandingkan dengan kinerja dari model Multilayer 

Perceptron (MLP) dari sisi akurasi klasifikasi dan waktu latih. Hasil pengujian menunjukkan 

akurasi dari model CNN mampu mengungguli akurasi dari model MLP meskipun CNN 

membutuhkan waktu latih yang lebih lama dibandingkan dengan MLP.  

 

Kata kunci—convolutional neural network, pengenalan karakter tulisan tangan, pengenalan 

Aksara Jawa 

 

 

Abstract 
 Convolutional neural network (CNN) is state-of-the-art method in object recognition 

task. Specialized for spatial input data type, CNN has special convolutional and pooling layers 

which enable hierarchical feature learning from the input space. For offline handwritten 

character recognition problem such as classifying character in MNIST database, CNN shows 

better classification result than any other methods. By leveraging the advantages of CNN over 

character recognition task, in this paper we developed a software which utilizes digital image 

processing methods and a CNN module for offline handwritten Javanese character recognition. 

The software performs image segmentation process using contour and Canny edge detection 

with OpenCV library over a captured handwritten Javanese character image. CNN will classify 

the segmented image into 20 classes of Javanese letters. For evaluation purposes, we compared 

CNN to multilayer perceptron (MLP) on classification accuracy and training time. Experiment 

results show that CNN model testing accuracy outperforms MLP accuracy although CNN needs 

more training time than MLP. 

 

Keywords—convolutional neural network, handwritten character recognition, Javanese 

character recognition 
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1. INTRODUCTION 

  

Like many other ethnic groups in Indonesia, Javanese tribe also has a traditional script 

called Aksara Jawa or Hanacaraka which was intended as the font to write any documents in 

Javanese Language. Aksara Jawa consists of twenty base symbols or base characters which are 

usually called as nglegéna or carakan. Figure 1 shows twenty base characters of Aksara Jawa 

with their transcription in Roman alphabet. 

 

 
 

Figure 1 Javanese script characters 

 

Unfortunately, Javanese people these days do not use Aksara Jawa in their daily life 

anymore. Although Aksara Jawa is taught in primary and secondary schools as part of muatan-

lokal curriculum in Central Jawa and Special District of Yogyakarta which are the main base of 

Javanese culture, it mostly can only be seen in road name signs as the transcription for the 

Roman alphabet. In order to preserve Javanese culture, especially traditional Javanese script, not 

only does Aksara Jawa can be used in education but it also can be used as a means for daily 

communication [1]. To support the preservation of Aksara Jawa both in education and also in its 

usage in daily communication, a tool or a software which has an ability to automatically 

recognize handwritten Javanese character is needed. 

There have been several studies of research regarding handwritten Javanese character 

recognition. Most of these studies use machine learning techniques such as hidden Markov 

model (HMM) or support vector machine (SVM) to perform the classification task with several 

feature extraction techniques. Widiarti and Wastu [2] used HMM to classify horizontal and 

vertical vector features while Nurul et. al. [3] used multi class SVM to recognize directional 

element feature from handwritten Javanese character dataset. 

Some other studies of research use artificial neural networks to classify handwritten 

Javanese character. Isnawati [4] employed backpropagation neural networks and applied 

thinning method to handwritten Javanese character dataset. Wibowo et. al. [5] used multilayer 

perceptron (MLP) model which was trained using backpropagation algorithm. Similarly, Arum 

[6] used the combination of wavelet feature extraction technique and also backpropagation 

neural networks. Budhi and Adipranata [7] employed several artificial neural network methods 

with ICZ-ZCZ features for handwritten Javanese character recognition. Several other studies [8, 

9, 10, 11] show that neural networks are able to perform image classification task with good 

performance if they are combined with appropriate feature extraction techniques. 

In this study, we propose a software which employs convolutional neural networks 

(CNN) model with image processing module using OpenCV library to perform handwritten 

Javanese character recognition. CNN is one of deep learning methods which has special layers 
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which are able to perform feature extraction learning and extraction directly from raw input 

space. Currently, CNN becomes state-of-the-art method in image classification tasks. 

2. METHODS 

 

The objective of this study is to build a software which performs handwritten Javanese 

character recognition. In order to achieve the objective, we developed a classification module 

which employs a CNN model. We trained the CNN model with a dataset of handwritten 

Javanese character images. For evaluation purposes, we also used the same dataset to train an 

MLP model with one hidden layer and an MLP model with two hidden layers. We compared 

those three models in both classification accuracy and training time. 

In this section, details of research methods used in this paper is described. The 

methodology consists of a) data acquisition for handwritten Javanese characters, b) building the 

CNN model, c) model training and model testing, and d) developing a web based application for 

handwritten Javanese character classification. Each part of the methodology will be described in 

the following subsections. 

2.1 Data acquisition 

In order to train the CNN model, an image dataset which consists of handwritten 

Javanese characters are needed. Unfortunately, there is no available public secondary dataset for 

handwritten Javanese characters. Therefore, in this study, a primary dataset of handwritten 

Javanese characters was manually collected from some people as shown in Figure 2. The dataset 

consists of 2,000 data which belongs to 20 classes of basic Javanese characters. Each class of 

Javanese character consists of 100 training data. Each data in the dataset is a 8-bit grayscale 

image which has a dimension of  28 x 28 pixels.  
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Figure 2  Handwritten Javanese chacter dataset 

2. 2 Building CNN model 

In essence, CNN can be seen as an extension for traditional neural network models, 

such as multilayer perceptron (MLP). A CNN model architecture consists of special layers to 

extract features from raw input space and a fully-connected neural network model with logistic 

regression classifier. The features which are usually called as feature maps are obtained from 

those special layers and then become inputs for fully-connected neural network which is 

actually an MLP model. Figure 3 shows an example of a CNN model architecture taken from 

Sermanet et. al. [12]. 

 

 
Figure 3  An example of CNN architecture [12] 

 

From Figure 3, it can be seen that prior to be processed in the classifier, the input for 

CNN will be processed in two stages. Both stages consist of convolution and subsampling 

operations. It can also be seen that both convolution and subsampling operations will reduce 

dimensions of the inputs. A convolution operation will transform a single two-dimensional input 

matrix into some smaller two-dimentional matrix or feature maps. At the end of the second 

stage, a function is performed to flatten or transform each feature map from two-dimentional 

matrix to one-dimentional matrix so that the feature maps are ready to be classified with MLP or 

fully-connected neural network. 

In CNN, the main objective of convolution and subsampling operations is for extracting 

features from raw input data. In order to achieve this objective, convolution operations which 

are multiplications of small kernel matrices and specified areas of a two-dimentional input 

matrix are performed. To produce a single smaller dimensions of feature map from an input 

matrix, the kernel will be shifted and several multiplications will be performed from left to right 

and from top to bottom over specified areas of the input matrix. The equation for a convolution 

operation to is defined in Formula (1) as stated in [13] as follows: 

 

 

    (∑         

 

   

   )  (1) 

 

where    is an element of a single output matrix from a convolution operation. The output 

matrix is produced from an activation function  . First, the sum of all multiplications of kernel 

matrix      and input matrix      is computed, subsequently the bias value    is added to the 

elements of the resulting matrix. Finally, it becomes the input for function  . In this study, the 

activation function used is rectified linear unit (ReLU) which is defined in Formula (2). 

 

 
 ( )  {

   (    )

   (   ) 
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 After convolution operations, a subsampling or pooling operation will be applied to 

each of feature map for dimension reduction. In this study, the function for subsampling used is 

max pooling function so that prominent features can be obtained. To reduce the dimension of a 

single feature map, a two-dimentional m x n kernel will select the highest value of (m x n) 

neighbouring elements and produce one single element in a new feature map matrix. Similar to 

convolution operation, the kernel will also be shifted from left to right and from top to bottom to 

produce a new feature map. 

 To prevent overfitting and improve the performance of CNN model, a dropout 

regularization algorithm [14] also be applied in the training phase of the model. Using dropout 

algorithm, some neurons in CNN layers will be randomly disabled with Bernoulli distribution. 

Subsequently, in the testing phase, all of neurons in all layers in CNN model will be activated 

again. Srivastava et. al. [15] stated that dropout algorithm can improve the performance of 

neural networks in various benchmark datasets. 

 After several convolution and subsampling operations, feature maps will be flatten so 

that they are ready to be classified with MLP or fully-connected neural network. An MLP or a 

fully-connected neural network consists of several layers. Each layer consists of several neurons 

that will perform a matrix multiplication between an input matrix    and internal weights      as 

defined in Formula (3) as follows: 

 

 
    (∑         ) 

 

   

 (3) 

 

where    is bias value,   is the number of neurons in a single layer, and   is an activation 

function, such as ReLU function that has previously defined in Formula (2). 

 After processed in several layers, feature maps will be processed in the output layer. 

The output layer of a fully-connected neural network or an MLP is a softmax function that 

produces probabilities of classes  ( ) that the CNN input may belong. A softmax function is 

defined in Formula (4). 

 

 
 ( )  

  

∑    
   

  (4) 

 

2. 3 Model training and testing 

A CNN model is included as one of neural network models which use supervised 

learning algorithm. This means that to update internal weight matrices in training phase, the 

model uses a cost function which calculate the distance between the output of the model, which 

is the predicted class, and the actual class that the input belongs. CNN models use cross entropy 

error function   as the cost function which is defined in Formula (5) as follows: 

 

 
   ∑(     (  )  (    )    (    ))

 

   

  (5) 

 

where    is the target class and    is the output of CNN model. 

 To perform training and testing phases of CNN model, the handwritten Javanese 

characters dataset was divided into 80% of training dataset and 20% of testing dataset with k-

fold cross-validation technique. Xavier weight initialization [16] was used in each training fold 

to initialize internal weight matrices in the CNN model. In the testing phase, the performance of 
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each fold in CNN model was measured using a confusion matrix and the value of the 

classification accuracy. The classification accuracy is defined in Formula (6) as follows: 

 

 
    

     

           
   (6) 

 

where    is true positive,    is true negative,    is false positive, and    is false negative. 

For this study, details of the CNN model architecture is shown in Table 1. The CNN 

model consists of three stages of convolution and subsampling operations, a fully-connected 

layer, and a softmax output layer. ReLU activation function and dropout regularization were 

applied to all layers in CNN model. The CNN model was built with Theano library, a deep 

learning library for Python. The CPU used was Intel Core i5-5200U, and the GPU was Nvidia 

GT940M. 

Table 1 The CNN architecture used in this study 

Layer Type Size Output Shape 

Input (1, 28, 28) - 

Convolution + ReLU 32 (3 x 3) filters (32, 26, 26) 

Max Pooling + Dropout (2 x 2) filters (32, 13, 13) 

Convolution + ReLU 64 (2 x 2) filters (64, 12, 12) 

Max Pooling + Dropout (2 x 2) filters (64, 6, 6) 

Convolution + ReLU 128 (3 x 3) filters (128, 4, 4) 

Max Pooling + Dropout (2 x 2) filters (128, 2, 2) 

Fully-Connected + ReLU + Dropout 1,000 neurons 20 

Softmax 20 way 20 

 

 We also trained and tested an MLP model with one hidden layer and an MLP model 

with two hidden layers with same handwritten Javanese character dataset. Accuracies of MLP 

models and CNN model were compared to verify whether convolution and subsampling layers 

in CNN model are able to learn features from the dataset. We compared the training time 

needed for both CNN and MLP model. Details of MLP models architecture are shown in Table 

2 and Table 3 respectively. 

 

Table 2 Architecture of MLP model with one hidden layer 

Layer Type Size Output Shape 

Input 784 neurons - 

Fully-Connected + ReLU 1,000 neurons 20 

Softmax 20 way 20 

 

 It can be seen from Table 2 that the MLP model with one hidden layer has an input 

layer with 784 neurons and a hidden layer with 1,000 neurons. Each neuron in the input layer 

will receive a single pixel value from a handwritten Javanese character image which has a 

dimension of 28 x 28 pixels. The MLP model will produce 20 values of probability of classes 

which the input may belong. 

 

Table 3 Architecture of MLP model with two hidden layers 

Layer Type Size Output Shape 

Input 784 neurons - 

Fully-Connected + ReLU 1,000 neurons 2,000 

Fully-Connected + ReLU 2,000 neurons 20 

Softmax 20 way 20 
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 From the architecture described in Table 3, it can be seen that we used 1,000 neurons in 

the first layer and 2,000 neurons in the second layer. We also used ReLU activation function in 

hidden layers and softmax function in the output layer for both MLP models. 

2. 4 Developing the web based application 

The software developed in this study is a Django web based application which has an 

ability to access webcam and receive an image from user with upload method. It has two main 

features, namely segmentation of captured handwritten Javanese character image with OpenCV 

library and classification of the segmented image with CNN module. Figure 4 depicts the 

detailed architecture of the developed software in this study. 

 

 
 

Figure 4. Architecture of the software developed in this study 

 

From Figure 4, it can be seen that the image segmentation module contains Canny edge 

detection and contours detection procedures with OpenCV library. The classification module 

consists of CNN module with stored weights which are obtained from model training using 

handwritten Javanese character dataset. 

 

 

 

3. RESULTS AND DISCUSSION 

 

When a user first opens the URL of the software through a browser, both direct upload 

and webcam upload method can be used. The user can upload a captured handwritten Javanese 

character image or capture a handwritten Javanese character image using a webcam. After 

receiving the image, the software will use OpenCV library to perform segmentation procedure 

which its details will be described in the next subsection. Furthermore, the user can choose 

CNN method or MLP method to classify the segmented image. To illustrate how the 

classification process in the software works, Figure 5 depicts a state in the software which has 

already received a captured image and has already performed the classification task. 

From Figure 5, it can be seen that the software could correctly recognize a character 

using CNN method, while it fails to do so with MLP method. Using MLP method, the character 

is incorrectly recognized as PA. On the other hand, CNN method can correctly recognize the 

character as HA. From this example, we can also see that the accuracy of CNN model is 

generally higher than the accuracy of MLP model. To verify this assumption, we conducted a 
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comparison procedure for testing accuracies for both CNN and MLP model which its details 

will be described in the next subsection, after the image segmentation procedure description. 

 

 
(a) 

 
(b) 

 

Figure 5  Character recognition results with (a) MLP model and (b) CNN model. 

 

3.1 Image Segmentation Result 

 Prior to the classification procedure, a segmentation procedure will be performed for the 

captured handwritten Javanese character image. Canny edge detection algorithm and contours 

detection algorithm are applied to the captured image using OpenCV library to perform the 

segmentation procedure. This segmentation procedure will produce segmented images of 

Javanese letter characters. Figure 6 shows an example of the segmentation process as one of the 

main software features in this study. 

 

                              

 

                          

(a)             (b) 
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Figure 6  Image segmentation results, (a) before and (b) after. 

 

3.2 Image Classification Result 

We used two variables namely training time and testing accuracy using k-folds cross 

validation method to measure the performance of CNN for handwritten Javanese character 

recognition task. We also compared the training time and testing accuracy results to other 

results which are obtained from MLP with one hidden layer and MLP with two hidden layers. 

We used pixel values of the input image as inputs for MLP without prior feature extraction 

technique. 

In each fold of the training phase for all models, we set a maximum epoch of 10,000 

iterations. In each iteration, we calculated the cost function value and stored the internal weights 

matrix. Since the objective of the models is to minimize the cost function, we used an internal 

weights matrix of the iteration with the lowest cost function value for the models  in the testing 

phase. Table 4 and Table 5 show the comparison results of those three models respectively. 

 

Tabel 4 Training time result of the models 

Model 

Training Time 

Cross 

Validation 1 

Cross 

Validation 2 

Cross 

Validation 3 

Cross 

Validation 4 

Cross 

Validation 5 

MLP with one 

hidden layer 
00:12:46 00:12:51 00:12:53 00:12:48 00:12:46 

MLP with two 

hidden layer 
00:34:51 00:34:49 00:34:41 00:34:56 00:34:57 

 

CNN 

 

01:48:30 01:49:37 01:50:19 01:49:59 01:50:10 

 

 From Table 4, we can see that MLP with one hidden layer requires minimal training 

time among other models for all cross validation folds. In average, MLP with one hidden layer 

only needs less than 13 minutes to train. If we add one more layer to the MLP, the training time 

will increase about 2.7 times. On the other hand, CNN requires more time to train compared to 

MLP due to the complex computations in convolution and subsampling layers. The model needs 

almost two hours for the training phase, which are about 4.6 longer than the training time for 

MLP model with one hidden layer. 

 

 Tabel 5 Testing accuracy results of the models 

Model 

Testing Accuracy 

Cross 

Validation 1 

Cross 

Validation 2 

Cross 

Validation 3 

Cross 

Validation 4 

Cross 

Validation 5 

MLP with one 

hidden layer 
0.53 0.56 0.60 0.62 0.52 

MLP with two 

hidden layer 
0.44 0.49 0.52 0.59 0.47 

 

CNN 

 

0.82 0.85 0.89 0.89 0.78 

  

Details of testing accuracy results of the three models are summarized in Table 5. 

Overall, classification accuracies of CNN model outperform classification accuracies of both 

MLP model. This means that convolutional and pooling layers in CNN model can successfully 
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learn features of the dataset. It can also be seen that adding more hidden layers to the MLP 

model does not improve its accuracy. 

 

 

 

4. CONCLUSIONS 

 

In this study, a software which employs CNN model to perform classification task for 

handwritten Javanese character recognition had been successfully developed. To quantify the 

performance of the classifier, k-folds cross validation technique had been used to measure the 

classification accuracy and the training time. The classification accuracy and the training time of 

CNN model were compared to the classification accuracy and the training time of MLP model 

with the same dataset. From the experiments, we conclude that CNN model’s accuracy is better 

than MLP model’s accuracy for handwritten Javanese character recognition task in all folds. 

However, CNN model needs longer time to be trained compared to MLP model. From the 

experiments, it can be seen that the accuracy of CNN model for the handwritten Javanese 

character dataset cannot reach 90% in all folds. This may be due to the insufficient number of 

the dataset since deep learning methods will give their best performance for huge amount of 

training data. CNN model optimization for a bigger handwritten Javanese character dataset is 

left for our future work. 
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