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Abstrak 

Salah satu metode peringkasan teks otomatis yang sederhana dan dapat meminimalkan 

redundansi pada ringkasan adalah metode Maximum Marginal Relevance (MMR). Metode 

MMR memiliki kelemahan yaitu terdapat bagian-bagian yang terpisah satu sama lain dalam 

hasil ringkasan yang secara semantic tidak terhubung. Oleh karena itu, penelitian ini bertujuan 

untuk membandingkan hasil ringkasan menggunakan metode MMR berbasis semantic dan 

MMR berbasis non-semantic. Metode MMR berbasis semantic memanfaatkan WordNet Bahasa 

dan corpus dalam pemrosesan ringkasan teks. Metode MMR berbasis non-semantic 

menggunakan metode TF-IDF. Penelitian ini juga melakukan pemampatan ringkasan sebesar 

30%, 20% dan 10%. Data penelitian yang digunakan berupa 50 teks berita online. Pengujian 

hasil ringkasan teks dilakukan dengan menggunakan toolkit ROUGE.. Hasil penelitian 

menyatakan bahwa nilai rata-rata f-score terbaik pada metode MMR  berbasis semantic adalah 

0,561, sedangkan nilai f-score terbaik pada metode MMR berbasis non-semantic adalah 0,598. 

Nilai tersebut dihasilkan dengan menambahkan proses preprocessing berupa stemming dan 

pemampatan hasil ringkasan 30%. Perbedaan nilai yang diperoleh disebabkan oleh 

ketidaklengkapan WordNet Bahasa dan terdapat beberapa kata di dalam judul berita yang 

tidak sesuai dengan EYD (KBBI).  

 

Kata kunci— peringkasan teks otomatis, metode MMR, semantic, non-semantic 

 

Abstract 
One simple automatic text summarization method that can minimize redundancy, in 

summary, is the Maximum Marginal Relevance (MMR) method. The MMR method has the 

disadvantage of having parts that are separated from each other in summary results that are not 

semantically connected. Therefore, this study aims to compare summary results using the MMR 

method based on semantic and non-semantic based MMR. Semantic-based MMR methods 

utilize WordNet Bahasa and corpus in processing text summaries. The MMR method is non-

semantic based on the TF-IDF method. This study also carried out summary compression of 

30%, 20%, and 10%. The research data used is 50 online news texts. Testing of the summary 

text results is done using the ROUGE toolkit. The results of the study state that the best value of 

the f-score in the semantic-based MMR method is 0.561, while the best f-score in the non-

semantic MMR method is 0.598. This value is generated by adding a preprocessing process in 

the form of stemming and compression of a 30% summary result. The difference in value 

obtained is due to incomplete WordNet Bahasa and there are several words in the news title 

that are not in accordance with EYD (KBBI). 

Keywords—automatic text summarization, MMR method, semantic, non-semantic 
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1. INTRODUCTION 

 

The development of the World Wide Web encouraged very rapid information growth, 

even according to Khan and Salim [1], data on the World Wide Web grew at an exponential 

pace. Exponential information growth results in information overload on the internet, as is the 

case with online news texts. Therefore, automatic text summarization is needed to shorten the 

time in knowing the content of the news.  

Automatic text summarization is the process of making a text summary that stores 

important information and contains general meaning from a text [2]. Its goal is producing text 

for the given text without loss in the overall information on the source text [3]. Text 

summarization methods are divided into two categories: extractive and abstractive. Extractive 

summarization extracts important sentences from source documents and them together to 

generate the summary. Abstractive summarization creates a brief useful summary by generating 

new sentences [4]. Some researchers have conducted automatic text summarization in 

Indonesian with several methods, including summarizing text using sentence scoring and 

decision trees [5], Text Summarization Based on Semantic Analysis [6], Sentence structure-

based summarization [7], dan query-based summarization [8]. The study did not apply word 

order calculations in sentences. This is important because the same words in sentences but in 

different sequences sometimes produce different meanings. 

Another method that can be applied to Indonesian text is Maximum Marginal Relevance 

(MMR). The Maximum Marginal Relevance (MMR) method is one of the simplest, most 

effective and able to reduce redundancies in the text summary results [9]. Other researchers 

have different opinions regarding text summarization with the MMR method. According to 

Yapinus, et al. [10], text summarizing using the MMR method alone without applying natural 

language comprehension techniques will have separate sections in summary results. 

  

2. METHODS 

 

2.1 Research Design 

The design of automatic text summarization research that will be built begins with 

entering the news text. In general, the research design consists of three stages: the text 

preprocessing stage, similarity measure, and text summarization with the MMR method. 

Preprocessing is a stage to produce a set of words that are ready to be processed and used as 

input at a later stage. The similarity measure is a stage to calculate the similarity between 

sentences. At this stage, the measurement is divided into two parts, namely semantic and non-

semantic based measurements. Semantic-based measurement is the calculation of similarities 

between sentences that will involve the lexical database and corpus. Non-semantic-based 

measurements only calculate the word distribution in the text with the TF-IDF method and 

calculate the similarity between sentences using the Cosine Similarity method. The purpose of 

grouping the similarity measure method is to compare the summary f-score values generated by 

the text summarization system. 

Testing the results of the summary text using the ROUGE (Recall-Oriented 

Understanding for Gisting Evaluation) toolkit. The ROUGE Toolkit is an N-gram based method 

that has proven to be highly correlated with human evaluation [11]. This toolkit works by 

comparing summaries generated by the system with manual summaries.  

2.2 Preprocessing 

The preprocessing stage is carried out by processing raw documents into documents that 

are ready to be processed for the next step. The first preprocessing in this study is sentence 

segmentation which is the breakdown of paragraphs into sentences. The solution is done by 

separating the sentence based on punctuation (.), Question mark (?) And exclamation point (!). 

The second preprocessing process is case folding which converts all letters into lowercase 
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letters and removes characters other than letter characters. The third process is tokenizing which 

is the process of cutting sentences into words based on spaces. The fourth preprocessing process 

is filtering which is the process of removing words that are not too influential (stopword) in the 

text. Furthermore, the stemming process aims to turn the word into a basic word.  

2.3 Similarity Measure 

The similarity measure is a functional tool used to measure similarities between objects. 

The result of the similarity measure process is a numerical value between 0 to 1. A value of 0 

means very different, while a value of 1 means exactly the same. Similarity measures are 

grouped into two, namely semantic and non-semantic based measurements. Semantic-based 

measurements can be applied to find the similarity between sentences and the similarity 

between words, such as research conducted by Li, et al. [12]. Li, et al. [12] researches the 

measurement of similarities between sentences by considering semantic information and 

synthetic information obtained from sentences and words. 

 

2.3.1  Semantic Based Measurement 

Semantic-based measurement is a measurement of similarity between sentences 

involving lexical databases and corpus. The Lexical database used is WordNet Bahasa which is 

the result of research by Noor et al. [13]. Figure 1 shows a flowchart of a semantic-based 

measurement process. 

 

 

 
Figure 1 Semantic-based measurement process flow diagram 
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a. Raw semantic vector 

 The process of raw semantic vector performs calculations about the semantic similarity 

between words (word similarity). The process of calculating the semantic similarity between 

words utilizes a lexical database in the form of WordNet Bahasa [13]. WordNet Bahasa is a 

development of WordNet, so WordNet Bahasa has a hierarchical structure of words that 

resembles human knowledge and consists of synsets. Synsets is a word or set of words that have 

exactly the same meaning. This hierarchical structure can determine the semantic distance 

between words. In Figure 2 there is an example of a semantic hierarchy between words in 

WordNet. 

 
 

Figure 2 The hierarchical basis of semantic knowledge [12] 

So, the semantic similarity calculation between two words (equation 1) can be done using the 

path length and path depth obtained from WordNet Bahasa.  

 

 

(1) 

Information: 

 is a semantic similarity between words.  is the length of the path that is short 

between words  (  and ), whereas  is the subsumer path depth in semantic nets in a 

hierarchical manner.  and are constants (  = 0,2 dan = 0,45). Optimal values  and  

are the results of Li, et al.'s research [12] that uses the knowledge base in the form of WordNet. 

The process of determining the path length can be done based on the following cases: 

a.  and  are in the same synset. This statement means that both words have the same 

meaning and have a path length that is 0. 

b.  and  are not in the same synset, but the syntax for  and  contains one or more 

common words. Examples, synset boy and synset girl have one common word, child. The 

purpose of this statement is that some  and  have the same features so that the path 

length between the two words is worth 1. 
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c.  and   are not in the same synset and there are no general words in the synset. In this 

case, the path length must be calculated. Examples of calculations based on Figure 1 are as 

follows: the path length between the word teacher and boy is 6. This value is derived from 

the shortest path length that is passed like teacher-educator-professional-adult-person-male-

boy. 

Path depth ( )needs to be taken into account because the words in the upper layer have 

more general concepts and semantic similarity is smaller than the words in the lower layer. Path 

depth value ( )is obtained by calculating the distance between subsumer with the highest or 

peak synset. Subsumer is the closest distance that connects between two words. The application 

can be seen in Figure 1. The words girl and boy are connected by synset person, then the person 

is subsumer. So, the path depth between the words girl and boy is 2. The path passed is the 

entity-life form-person. 

b. Semantic vector 

 The next process is the semantic vectfior that utilizes a corpus for content information. 

So, the value of the contribution of a word in the text will be calculated by comparing the word 

to the corpus. Corpus in this study comes from a collection of texts which are the results of 

research from Dinakaramani et al. [14]. This process also utilizes lexical semantic vector 

( )values as shown in Table 1. In Table 1, the first row is a collection of words from the first 

sentence , while the first column is a collection of unique words  from two sentences. This 

process will produce semantic vector values for each sentence. 

 

Table 1 Example of a semantic vector calculation process 

 khawatir  bantu presiden  soeharto ulang  Weight 

khawatir 1     1 I(khawatir)/I(khawatir) 

bantu  1    1 I(bantu)/Ibantu) 

presiden   1   1 I(presiden)/ I(presiden) 

soeharto    1  1 I(soeharto)/ I(soeharto) 

ulang     1 1 I(ulang)/ I(ulang) 

jakarta 0 0 0,044 0,036 0 0 I(jakarta)/ I(jakarta) 

kompas 0 0 0,079 0,065 0 0 I(kompas)/I(kompas) 

dana 0 0 0,157 0 0 0 I(dana)/I(dana) 

banpres 0 0 0 0 0 0 I(banpres)/I(banpres) 

instruksi  0 0 0,298 0 0 0,298 I(instruksi)/I(presiden) 

inpres 0 0 0 0 0 0 I(inpres)/I(inpres) 

kerap  0 0 0 0 0 0 I(kerap)/I(kerap) 

penting 0 0 0,241 0,200 0,283 0,283 I(penting)/I(ulang) 

politik 0 0 0,365 0 0 0,365 I(politik)/I(presiden) 

guna 0 0 0 0 0 0 I(guna)/I(guna) 

tahu 0 0 0,057 0,047 0 0 I(tahu)/I(tahu) 

rakyat 0 0 0,445 0,365 0 0,445 I(rakyat)/I(presiden) 

 

Determining lexical semantic vector ( )values can be seen from the following cases: 

a. If x appears in the first sentence ( ),  is given a value of 1.  

b. If  does not exist in , then the semantic similarity value between  and all the words 

in  use equation 1. So, the most similar word between  and the word on  will have 

the highest value (ς).  If the resulting value exceeds the threshold (0,2), then = ς. If it is 

less than the threshold, then . 
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The last column (Weight) is the most significant information content for weighting by involving 

the corpus. Next, the process of finding semantic vectors for  and . So, equation 2 is a 

calculation of semantic vector values involving lexical semantic vector ( ) and information 

content values. 

 

  (2) 

Information: 

 is a semantic vector.  is a lexical semantic vector value (  = 1,2,3,…).  is the word in the 

joint word set (T),  is the word in the sentence. The use of  and allows two words to 

contribute to similarity based on their respective information content. The decrease in the 

formula for   or  can be seen in equation 3. 

 

 

 

(3) 

Information: 

: information content word  in corpus 

n: the number of words  in the corpus 

N: the total number of words in the corpus 

c. Semantic similarity 

After the calculation of  for the two sentences is complete, then the next process 

calculates the semantic similarity value between the two vectors. Equations are seen in equation 

4. 

 

 

 
 

(4) 

Information: 

: semantic similarity between two sentences 

 and : semantic vector value of sentence 1 and sentence 2 

d. Word order similarity between sentences 

According to Li, et al. [12], the similarity of word order (word order similarity) in the 

sentence must be taken into account. This is because the same words with different sentence 

structures sometimes produce different meanings. This statement can be shown in the following 

example: 

: Adik mengajari kakak di taman 

: Kakak mengajari adik di taman 

The two sentences consist of the same word but a slightly different wording. If you use 

the "bag of words" method that is calculating the similarity of sentences based on the same word 

spread, then those two sentences will be identified to have the same meaning. In terms of, if 

humans interpret the two sentences, they must have different meanings. Therefore, the wording 

in the sentence is very important to consider to measure the similarity between sentences.  

The process of word order similarity calculation between sentences is done by giving an 

index number to each word in  and . Index numbers are given according to the order of 

words in the sentence. The next process is formed word arrangement vectors (  and ) for  

and  based on a collection of unique words ( ). Here's the case in determining the word 

arrangement vector applied to : 
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Case 1: If the same word is in , then the entry in  will be filled in with the index number 

that corresponds to . If nothing is the same, the word that is most similar to  in  will be 

determined. 

Case 2: If the similarity value between  and  is greater than the threshold, then the entry of 

 in  will be filled with the index  in . 

Case 3:  If the search value of both cases fails, then the entry  in is 0. 

So, the equation for word order similarity between sentences is: 

 

 

 

(5) 

 Information:  

: word order similarity between two sentences 

 and : word arrangement vector for  and  

e. Overall sentence similarity 

According to Li, et al. [12], the calculation of similarities between sentences contains 

two components that are considered, namely semantic similarity and word order similarity. 

Semantic similarity shows lexical similarity, while word order similarity is synthetic 

information that looks at the order of words in a sentence. So, overall sentence similarity can be 

calculated by equation 6. 

 

  (6) 

Information: 

 determines the relative contribution of semantic information and word order similarity 

information for calculating overall sentence similarity.  is worth  [12]. 

 

2.3.2 Non-Semantic Based Measurement 

Similarity measurement at this stage does not utilize lexical databases or corpus. The 

measurement between sentences is done by calculating the word distribution in the news text. 

At this stage, the word weighting will use the Term Frequency-Inverse Document Frequency 

(TF-IDF) method and measure the similarity between sentences using the Cosine Similarity 

method as equation 4. TF-IDF is one method of weighting words in sentences. TF is the 

calculation of the occurrence of words in the entire document. IDF is a measure of the 

importance of a word based on the rarity of its occurrence [15]. After the value of both is 

obtained, the value will be calculated as multiplication as equation 7. 

 

 

 

(7) 

 

Information: 

: the weight of a word i 

: the number of words i in j 

: the number of documents containing the word i 

: the total number of documents 

 

2.4 Text Summarization with the MMR Method 

Maximum Marginal Relevance (MMR) is one of the many text extraction methods that 

can be applied to summarize a single-document or multi-document by repeatedly ranking and 

comparing the similarity between documents. This method was first proposed by Carbonell and 

Goldstein in 1998. The Maximum Marginal Relevance (MMR) method is one of the simplest, 
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most effective and able to reduce redundancies in the text summary results [9]. If the text 

summarization results in a high similarity between sentences, then there is a possibility of 

redundancy, so a method that can reduce redundancy is needed. Equation 8 is a way of 

calculating MMR to reduce redundancy.  

 

  (8) 

At each step, the MMR method manages the text  which contains the sentence that 

has been extracted into the summary and manages the collection of sentence  that has not been 

extracted. Each extraction, the sentence with the highest value is added to the summary. Each 

sentence is given the value of weighting its resemblance to the query which is the title of the 

text.  is a cosine similarity between two feature vectors.  aims to adjust the value given to 

emphasize relevance and avoid redundancy.  is worth between 0 and 1.  

The main strength of the MMR method is the ability to produce sentences with new 

information that can be obtained from equation 8.  aims to measure the 

similarity of a sentence with a given query. The most relevant sentence will be a summary. 

Furthermore, the sentence chosen as the next summary is a sentence that is still similar to the 

query but introduces new information so that it can reduce redundancy in the summary. These 

objectives can be obtained by calculating the similarity of a sentence with a summary that has 

been prepared previously ( ).  
 

 

3. RESULTS AND DISCUSSION 

 

3.1 Similarity Measure (Semantic and Non-Semantic Based Measurements) 

Based on the results of the study, the value of the f-score comparison summary results 

between semantic and non-semantic-based measurements on 30% compression can be seen as 

Figure 3. Based on Figure 3 it can be concluded that the highest f-score value on non-semantic-

based measurements is 0.598, while the highest f-score on semantic-based measurements is 

0.561. This is because there are two deficiencies found, namely the deficiencies in the WordNet 

Bahasa and the data used. Weaknesses in WordNet Bahasa are some words in the title and news 

text not contained in WordNet Bahasa. This will affect the calculation of the similarity between 

words. 

 
Figure 3 Average semantic and non-semantic based f-score measurements with 30% 

compression 
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Furthermore, the lack of data used is the word contained in the news text title does not 

use standard language, meaning that the word is not in accordance with KBBI (Big Indonesian 

Dictionary). If a word is not standard (not in accordance with KBBI), then the word will never 

be in WordNet Bahasa. If a word is not found in WordNet Bahasa, then the value of the 

similarity between words will produce a zero value. This will affect the results of the summary 

produced by the text summarization system. This statement can be proven by the example of 

processing a news text entitled “Akil Mochtar Persoalkan Kasasi Praperadilan Ginandjar”. 

In the news, title there is a word that is not standard (not contained in KBBI) as the 

word  “Persoalkan”. The standard word for “Persoalkan” is “Mempersoalkan”. The following 

summary results are carried out by the text summarization system using different words, namely 

the word  “Persoalkan” and “Mempersoalkan” in the news text title: 

Table 2 Summarization results with different words 

 Manual 

Summary 

System Summary 

 “Persoalkan” “Mempersoalkan” 

Sentence 1, 2, 20, 21, 22 1, 8, 13, 21, 10 1, 8, 20, 2,13 

 

In Table 2 it can be seen that the summary generated by the system with different words 

in the text title (“Persoalkan” dan “Mempersoalkan”) produces a different summary. The 

summary of the system with the title containing the word “Persoalkan” has a summary with the 

same 2 sentences with the manual summary. These two sentences are the 1st sentence and the 

21st sentence. The summary of the system with the title containing the word “Mempersoalkan” 

has the same 3 sentences with the manual summary. The sentence is the 1st sentence, the 2nd 

sentence, and the 20th sentence. Based on the summary results produced by the two words, the 

values of recall, precision and f-score will also be different. Recall, precision, and f-score results 

look like Table 3. 

Table 3 Results of recall, precision, and f-score 

Word in Title Recall Precision F-Score 

“Persoalkan” 0,611 0,539 0,573 

“Mempersoalkan” 0,759 0,741 0,750 

Table 3 shows the difference in recall, precision, and f-score values. Recall, precision 

and f-scores with the word “Mempersoalkan” in the title have a value greater than the recall, 

precision, and f-score with the word “Persoalkan” in the title. This is because the word  

“Persoalkan” is not a standard word (according to the KBBI), so the word is not contained in 

WordNet Bahasa. The influence of a word not found in WordNet Bahasa will result in zero 

similarity values between words so that it will affect the results of the summary carried out by 

the text summarization system. 

 

3.2  The Optimal Value in the MMR Method 

In this study also look for the optimal value in equation 8. Experiments carried out on 

Indonesian online news data and calculate the average value of MMR f-score generated as 

shown in Figure 4. 
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Figure 4 Average MMR based non-semantic f-score with variations in  values 

When  = 1, MMR gradually calculates the list of standard relevant ratings and 

calculates the maximum diversity rating between documents at  = 0. Therefore a linear 

combination is needed. In Figure 4, the optimal  value is  0,9. This shows that the summary 

produced is relevant to the original document. 

  

3.3 Summary Results Based on Summary Compression 

In this study, analysis based on summary compression is carried out, namely 30%, 20% 

and 10% of the length of the text. The results of the study can be seen in Figure 5 and Figure 6. 

In Figure 5 and Figure 6, it can be seen that the summary results on semantic and non-semantic 

based measurements and 30% compression of text length resulted in a better f-score than 

compression of 20% and 10%. from the length of the text. This causes 30% compression to have 

a longer summary length than 20% and 10% compression, so the chance of similarity between 

manual summary and system summary is greater. 

 
Figure 5 Average semantic-based measurement f-scores with compression of 30%, 20%, and 

10% 
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Figure 6 Average of non-semantic-based measurement f-scores with compression of 30%, 20%, 

and 10% 

 

4. CONCLUSIONS 

 

Based on the research and test results, it can be concluded as follows: The best f-score 

value on MMR method with semantic-based measurement (with the understanding of natural 

language) is 0.561, while with non-semantic-based measurements (without understanding 

natural language) is 0.588. This value is generated by adding a preprocessing process in the 

form of stemming and compression of 30% summary results. 
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