
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.13, No.3, July 2019, pp. 273~282

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: https://doi.org/10.22146/ijccs.47267  273

Received July 3rd,2019; Revised July 17th, 2019; Accepted July 23th, 2019

Data Integrity and Security using Keccak and Digital

Signature Algorithm (DSA)

Muhammad Asghar Nazal*
1
, Reza Pulungan

2
, Mardhani Riasetiawan

3

1
Master Program of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia
2,3

Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia

e-mail: *
1
m.asghar@mail.ugm.ac.id,

2
mardhani@ugm.ac.id,

3
pulungan@ugm.ac.id

Abstrak

Data security menjadi sangat penting ketika menggunakan cloud computing, salah satu

penelitian yang sedang berjalan dan menggunakan teknologi cloud sebagai sarana

penyimpanan adalah G-Connect. Salah satu pengembangan yang dilakukan projek G-Connect

adalah mengenai keamanan pada data, terutama dalam masalah verifikasi data yang dikirim.

Pada penelitian sebelumnya, algoritma Keccak dan RSA diimplementasikan untuk kebutuhan

verifikasi data. Namun setelah dilakukan studi literatur mengenai algoritma lainnya yang dapat

membuat tanda tangan digital, ditemukan bahwa terdapat algoritma yang lebih cepat dari RSA

yaitu, Digital Signature Algorithm (DSA).

DSA merupakan algoritma kunci yang digunakan untuk tanda tangan digital, namun

karena DSA masih menggunakan Secure Hash Algorithm (SHA-1) sebagai algoritma untuk

hash, maka DSA sudah jarang digunakan untuk keperluan keamanan data, sehingga dipilih dan

digunakan algoritma Keccak sebagai pengganti algoritma hash pada DSA. Sekarang ini

algoritma Keccak telah dijadikan standar untuk algoritma fungsi hash SHA-3 yang baru.

Karena permasalahan di atas maka fokus penelitian ini adalah pada keamanan data cloud

dengan permasalahan verifikasi data menggunakan algoritma Keccak dan DSA. Hasil dari

penelitian ialah terbukti bahwa algoritma Keccak dapat berjalan pada sistem kerja DSA, serta

diperoleh perbandingan waktu eksekusi proses signing dan verifying antara DSA dan RSA di

mana keduanya menggunakan algoritma Keccak.

Kata kunci—Algoritma Keccak, algoritma RSA, DSS, DSA

Abstract
Data security is a very important compilation using cloud computing; one of the

research that is running and using cloud technology as a means of storage is G-Connect. One of

the developments made by the G-Connect project is about data security; most of the problems

verification of the data sent. In previous studies, Keccak and RSA algorithms have implemented

for data verification needs. But after a literature study of other algorithms that can make digital

signatures, we found what is meant by an algorithm that is better than RSA in rectangular

speeds, namely Digital Signature Algorithm (DSA).

DSA is one of the key algorithms used for digital signatures, but because DSA still uses

Secure Hash Algorithm (SHA-1) as an algorithm for hashes, DSA rarely used for data security

purposes, so Keccak is used instead of the hash algorithm on DSA. Now, Keccak become the

standard for the new SHA-3 hash function algorithm. Because of the above problems, the focus

of this research is about data verification using Keccak and DSA. The results of the research

are proven that Keccak can run on DSA work system, obtained a comparison of execution time

process between DSA and RSA where both use Keccak.

Keywords—Keccak algorithm, RSA algorithms, DSS, DSA

mailto:1m.asghar@mail.ugm.ac.id
mailto:2mardhani@ugm.ac.id
mailto:3pulungan@ugm.ac.id

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 13, No. 3, July 2019 : 273 – 282

274

1. INTRODUCTION

Cloud computing is a technology that utilizes services using a central server that is

provided by a provider and is virtual and can provide services to the use of software, data

storage, networks, and data computing using. Therefore, data security is very important when

using cloud computing at all levels: infrastructure-as-a-service (IaaS), platform-as-a-service

(PaaS), and software-as-a-service (SaaS), including data-in-transit, data-at-rest, data processing,

data flow, and data origin [1].

One study that is running and using cloud technology as a means of storage is G-

Connect. G-Connect is a research that focuses on developing applications in the field of Internet

of Things (IoT) and cloud technology with the characteristics of research locations in 3T areas

that are minimal with their internet network. Some developments are in the active device IoT

model, data management on IoT devices, management of data transmission from IoT devices to

the cloud, and security for data transfer and data storage on the cloud.

For development carried out on G-Connect using cloud technology as a means of

storing data, several aspects need to be considered in its development, that is data security

aspects. In the security aspect of data, one of the problems is about verifying the data sent,

whether it is from the node (address) that is correct or not. One method that can be used to

verify data is the digital signature method. Digital signatures are a method used to authenticate

message content and provide the ability to verify the owner of the message and the time of

signature. One algorithm that can be used for digital signature needs is the Digital Signature

Algorithm (DSA) [2].

DSA designed by the National Institute of Standards Technology (NIST) and the

National Security Agency (NSA) in the early 90s and then published in 1991. DSA is a public

key technique, which is only a scheme of digital signatures with the results of signs his hand is

320 signature bits [3]. DSA uses Secure Hash Algorithm (SHA) as its hash algorithm. SHA is

the most used hash function, made by NIST and published in 1993. Until now, there are four

types of SHA, i.e. SHA (SHA-0), SHA-1, SHA-2, and SHA-3 [4]. Although SHA-1 cannot be

solved yet, because of the structure and operation similar to MD-5 and SHA-0, it is considered

unsafe. SHA-2 is safer than SHA-1, but because of the same mathematical structure and

operation as SHA-1, it might be unsafe. Therefore NIST built a new standard and created a

competition generation new hash function created by NIST, which is now called SHA-3 [5].

The Keccak algorithm is one of the hash function algorithms designed by Guido

Bertoni, Joan Daemen, Michael Peeteres, and Gilles Van Assche. Keccak is Keccak, the winner

of the SHA-3 Cryptographic Hash Algorithm Competition, organized by NIST and has become

the standard for the new Secure Hash Algorithm (SHA-3) hash function algorithm. Keccak is

different from other SHA-3 finalists in terms of using sponge construction. If other designs

depending on the compression function, Keccak uses a non-compression function to absorb and

then squeezing the digestion [6].

In its application, the Keccak algorithm can be combined with public-key techniques. In

the previous study [7], which discussed the use of the Keccak algorithm on RSA for data

verification needs. But after a literature study of the RSA and DSA algorithms in the use of

digital signatures, it was found that DSA is a better algorithm than RSA in terms of speed.

Based on the previous description, the focus of this research is on how the application of

Keccak algorithm in Digital Signature Algorithm (DSA) to verify data, and comparison of

execution time between Keccak algorithm on DSA and Keccak algorithm in RSA using data

sourced on IoT devices.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Data Integrity and Security using Keccak and Digital Signature... (Muhammad Asghar Nazal)

275

2. METHODS

2.1 System Analysis

This research is part of G-Connect, where the research is one of the research projects

within the Department of Computer and Electrical Sciences that implement IoT devices and

Cloud technology to help disaster-prone areas. The scope of the G-Connect Project is divided

into seven parts including device communication between Arduino and Raspberry Pi,

compression and transmission of data on the Raspberry Pi, operating system and scheduling on

Raspberry Pi, cloud scheduling, the transmission of data extraction, correct and data validation

in the cloud while the main focus of this research is about data validation (verification) in the

cloud. For illustrations data validation of G-Connect shown in Figure 1.

Figure 1 Illustrations Data Validation of G-Connect

Regarding data verification, this research used the Keccak algorithm on DSA to verify

data received in the cloud. DSA is used to create digital signatures, while the Keccak algorithm

is used to do the hashing process on the DSA. DSA creates 320-bit digital signatures and is an

algorithm used for digital signature processes, where digital signatures are a method to

authenticate message content and provide the ability to verify the owner of the message and the

time the signature for the DSA summary is shown in Table 1.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 13, No. 3, July 2019 : 273 – 282

276

Table 1 Digital Signature Algorithm

Public Key Global Values

p The prime numbers
12 2L Lp   for 512 1024L  and L are

multiples of 64; that is bit lengths between 512 and 1024 bits with

addition of 64 bits

q The dividing prime number (1)p  , where
159 1602 2q  which the bit

length is 160 bits

g (1)/ modp qg h p , where h any integer with 1 (1)h p   so that

(1)/ mod 1p qh p 

User Private Key

x Random or pseudorandom integer with 0 x q 

User Public Key

y modxy g p

User Per-Message Secret Numbers

k Random or pseudorandom integer with 0 k q 

Signing

r (mod)modkr g p p

s 1[(())]mods k H M xr q 

Signature = (r, s)

Verifying

w 1(') modw s q

u1 1 [(')]modu H M w q

u2 2 (') modu r w q

v 1 2[()mod]modu uv g y p q

TEST: v = r’

M Message to sign

H(M) hash fromM use SHA-1

M’, r’, s’ version received from M, r, s

For the Keccak algorithm, it is chosen to replace the hash function that exists on DSA,

because the hash function on DSA still uses SHA-1, so Keccak is chosen to replace the hash that

is on DSA, because Keccak is an SHA-3 hash function that has become the standard hash

function new, proven security [8].

2. 2 Keccak Algorithm

Keccak is a one-way hash function algorithm based on sponge construction using the f-

keccak permutation function with a permutation length range b size of each lane. The condition

of b is indicated by equation (1) and equation (2).

25 2lb   (1)

where

0 6l  (2)

The Keccak algorithm has the same principle as the cipher block algorithm, where the

process is carried out on blocks, each process result depends on the input and results of the

previous process, and each process is imposed on the main function consisting of several round

functions which are titrated several times. But there is a difference between the Keccak one-way

hash algorithm, with the cipher block algorithm, as follows:

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Data Integrity and Security using Keccak and Digital Signature... (Muhammad Asghar Nazal)

277

1. Keccak does not have a key schedule

2. Use round constants that are fixed rather than round keys.

Keccak uses the inner state during the hashing process. And the function of the sponge

used consists of padding, absorbing, and squeezing. Each state has a length according to the

length of the permutation i.e. b.

The Keccak algorithm accepts three input parameters, i.e. bitrate (r), capacity (c), and

diversity (d). In general the process of this Keccak is:

1. Preparation of input messages (P), which is applying padding to the input message. The

length of the message input padding result must be a multiple of r, with r = bitrate.

2. Enumeration of the input message becomes
0 1 2, , , , iP P P P , where i = number of

multiples of the length of the bitrate for the length of the input message.

3. Absorbing all fractions of the input message.

4. Squeezing a number of j, where j = multiple output lengths r/w to fill the desired output

length, r = bitrate and w = lane length of state. Where:

2lw  (3)

5. Output is a concomitation of squeezing output in a certain bitrate range.

State on Keccak is a series of bits that are seen as a three-dimensional array of these

bits. Each axis in the array is represented by x, y, and z. x x y is the slice of the state, and z is the

axis of the lane state. The process carried out on the Keccak state is based on each slice state.

The number of bits for each slice in the state is fixed, i.e. 5 x 5 or 25-bit while the size of each

lane for a state is 1, 2, 4, 8, 16, 32 or 64.

The Sponge function on Keccak is based on the sponge work scheme. The sponge work

process scheme is a simple iterative process scheme for constructing a sponge function with

variable length inputs and variable output lengths depending on the fixed length of

transformation (or permutation) f operating in a fixed number b in bits [9].

Figure 2 Keccak Sponge Scheme

The general equation for the keccak-f function is the keccak-f [b] or the keccak-f [r + c]

where b corresponds to equation (1). Because the value of l has a range between 0 and 6, the

possible values are 25. 50, 100, 200, 400, 800 and 1600. In Figure 1, there are two phases in the

sponge construction, i.e. the absorbing phase and the squeezing phase.

1. Absorbing phase, is a phase where the process is carried out on all fractions of the input

input 0, 1, 2,(, ,)iP P P P xor with the bitrate part of the state then passed into the f

Absorbing function iteratively according to the number of fractions obtained..

2. Fase squeezing, is a phase to get the output. In this phase, several specific bits of f function

is confirmed so that the number of concomitant bits is the same as the desired number of

concomitant bits.

The function of the Keccak sponge is the application of sponge construction by first

carrying out the initialization process. In general, the initialization process is divided into two

stages, as follows:

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 13, No. 3, July 2019 : 273 – 282

278

1. Sets each bit in a state with zero for the initial state.

2. Applying the padding to the message so that the length of the input message is a multiple

of the length of the initial bitrate specified. This process is done by adding 1 and several 0

as little as possible until the length of the message meets the multiples of the specified

bitrate state length. Equation (4) and equation (5) are applied in this process.

(,8) || (,8) || (/ 8,8)P pad M enc d enc r (4)

(,)P pad P r (5)

(,)pad M n function where message M plus 1 is then added 0 such that the number M is

the smallest multiple of n.

(,)enc x n function that produces a string with n-bit length taken from Least Significant Bit

(LSB) kto Most Significant Bit (MSB), on x.

The keccak-f permutation function is the main function in Keccak. This function takes

the state as input and performs several permutation operations consisting of five operating

stages [6], i.e. diffusion (theta), inter-slice dispersion (rho), disturbing horizontal/vertical

alignment (pi), non-linearity (chi) and break symmetry (iota).

1. Diffusion operation/ θ (theta) Diffusion operations are linear.

This operation only checks 11 bits into one. Therefore, each bit affects the other eleven

bits. In this process, 50 XOR and five rotations occur.

2. Inter-slice dispersion operation/ ρ (rho)

Inter-slice dispersion operations consist of translation operations in the lane. Without this

operation, the diffusion between slices will be very slow. This operation is also linear, with

the inverse in the form of a reshuffle which is contrary to the previous shift.

3. Disturbing horizontal/vertical alignment operation/ π (pi)

The disturbing operation horizontal/vertical alignment is a transposition operation against a

lane that provides dispersion and aims to obtain long-term diffusion. The essence of this

operation is to multiply each bit in slice with a matrix [[0,1], [2,3]].

4. Non-Linearity operation/ χ (chi)

The non-linearity operation is the only non-linear mapping operation in the keccak-f.

Without this operation, the round Keccak function will be linear. This operation can be

seen as a 5w S-Box operation application for 5-bit lines. This operation itself is invertible;

the inverse of χ itself is different.

5. Break symmetry operation/ ι (iota)

The break symmetry operation consists of adding round constants which aim to disperse

symmetry. The number of active bit positions in the round constant is l + 1. If l increases,

the round constant will add more asymmetry.

This permutation operation in the keccak-f function is often also called the Round. At

each keccak-f function, several rounds are carried out. The number of rounds recommended can

be calculated using equation (6), with l as in equation (2). So for keccak-f [1600] the

recommended number of rounds is 24.

12 2rN l  (6)

2. 3 DSA System Architecture

DSA has a property in the form of several parameters as follows.

1. p, is a prime number with length L bits, where 512 1024L  and L must be multiples

64. Parameter p public and can be shared by people in the group.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Data Integrity and Security using Keccak and Digital Signature... (Muhammad Asghar Nazal)

279

2. q, is prime 160 bit, is a factor of 1p  , so that (1)mod 0p q  . Parameter q is a public

key.

3.
(1)/ modp qg h p , where 1h p  so that

(1)/ mod 1p qh p  . Parameter g is a public

key.

4. x, is an integer and x q . x is a private key.

5. y, modxy g p , is a public key.

6. m, message will be signed.

DSA has three main processes; i .e. Key Pair Generation, Digital Signature Generation,

and Digital Signature verification. The Key Pair Generation and Digital Signature Generation

processes are shown in Figure 3, while the Digital Signature verification process is shown in

Figure 4.

Message (M)

Hashing

Message (M)

using Keccak

Algorithm

- Calculated

signature pair

- Calculated s

- Send

signature (r,s)

with Message

(M)

Random number

k is selected

- Calculated public key y

- Calculated r

- Primes q 160-bit is selected

- Primes p is selected

- g is selected

- Random

private key x is

selected

- q is selected

Figure 3 Illustration of the signing process

The procedure for generating a key pair is as follows.

1. Primes p and q are selected, where (1)mod 0p q 

2. Calculated
(1)/ modp qg h p , where 1h p  and

(1)/ mod 1p qh p 

3. Random private key x is selected, where x q

4. Calculated public key modxy g p

Next is a signature generation procedure (signing), as follows.

1. Message m is converted to message digest with Keccak Algorithm H(m).

2. Random number k is selected, where k q

3. The signature of message m is number r and s. r and s are calculated as follows.

(mod)modkr g p q

1[(())]mods k H m xr q 

4. Message m sent with the signature r and s.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 13, No. 3, July 2019 : 273 – 282

280

Hashing Message (M) using

Keccak Algorithm

- Calculated w

- Calculated u1

- Calculated u2

Calculated v

Compare v with r

Message (M)

and signature

(r,s) recieved

- Taken y

- Taken q

- Taken g

Figure 4 Illustration of the verifying process

The procedure for verifying the validity of the signature is as follows.

1. Calculated
1 modw s q

1 (())modu H m w q

2 ()modu rw q

1 2(()mod)modu uv g y q q

2. If v r , then the signature is valid; this means that the message is still original and sent by

the correct sender.

3. RESULTS AND DISCUSSION

Testing is done using the black box testing method to ensure that the program runs as

expected. Testing is done by calculating the execution time for the process of making a

signature and the verification process. Testing is done by executing the program ten times for

each algorithm and condition. The division of execution time is divided into two, i.e. the signing

process and verifying time, with two conditions that valid data and invalid data (has been

changed when the data was sent) The results of the execution of the signature processing time

using the Keccak algorithm on DSA and the Keccak algorithm on RSA are shown in Table 2

and Table 3.

Table 2 Keccak Process Execution Results on DSA and RSA for Valid Data

Experiment

Time (second)

Signature Verification

DSA RSA DSA RSA

1 0.599 5.820 0.078 0.030

2 0.710 5.519 0.080 0.017

3 0.199 5.746 0.078 0.013

4 0.151 6.052 0.094 0.014

5 0.198 5.726 0.079 0.013

6 0.406 5.569 0.078 0.015

7 0.348 5.367 0.091 0.016

8 0.321 5.501 0.092 0.010

9 0.419 5.436 0.078 0.015

10 0.278 5.337 0.081 0.014

Average 0.363 5.607 0.083 0.016

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Data Integrity and Security using Keccak and Digital Signature... (Muhammad Asghar Nazal)

281

Table 2 is a table of results of the execution of the verification process on DSA and

RSA, each of which uses the Keccak algorithm for its hashing function. From Table 2 it can be

found that the difference between the DSA and RSA for the signature processing time is 5.224

seconds faster when the DSA signature process, the difference in processing time is very far

because the signature produced by DSA is 320 bits, while RSA produces a key 1024 —2048

bits [10]. For the verification process time, RSA is faster with a time difference of about 0.067

seconds, which is a difference that is not so far away.

Table 3 Keccak Process Execution Results on DSA and RSA for Non Valid Data

Experiment

Time (second)

Signature Verification

DSA RSA DSA RSA

1 0.262 5.437 0.093 0.010

2 0.167 7.071 0.076 0.014

3 0.561 5.539 0.079 0.011

4 0.242 5.935 0.077 0.011

5 0.326 5.677 0.076 0.012

6 0.317 5.569 0.080 0.015

7 0.421 5.366 0.079 0.014

8 0.493 5.388 0.084 0.016

9 0.450 5.450 0.099 0.011

10 0.221 5.578 0.087 0.012

Rata-rata 0.346 5.701 0.083 0.013

In Table 3 the difference in the time of signature processing between DSA and RSA is

5.355 seconds superior to DSA, while for the verification process, the difference in time

obtained is 0.070 seconds superior to RSA. From the results of Table 2 and Table 3, it was

found that the results of the time of the data verification process are valid and invalid data

require execution times that are not much different.

For testing its integrity, the message M is modified to be another message (M’) and then

with a digital signature, the original message M is sent back to the recipient. If something like

that happens, then with digital signatures, it can be known whether the message sent is still

intact or has been modified. If the original message is modified even if only one character is

then verified, then the verification results will show the message has been modified. This

happens because the digital signature was invalid for the modified message. That way, the

digital signature on the DSA can also check the integrity of the original message from the

sender.

Furthermore, authentication testing is used to check the validity of the sender of the

message. On the side of the recipient, signatures are verified to prove their authenticity using;

first, the digital signature (r, s) is decrypted using the message sender's public key, generating

the original message digest. Second, the receiver then converts the M message into a message

digest using the Keccak algorithm, which is the same as the hash function used by the sender.

Third, if , means the signature is received authentic and comes from the correct sender. If

the sender does not recognize that the sender sent the message, the recipient can prove it with

the digital signature of the message.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 13, No. 3, July 2019 : 273 – 282

282

4. CONCLUSIONS

The Keccak algorithm can be applied to the Digital Signature Algorithm (DSA) and

runs according to the design of the system created. When compared with previous studies,

where the Keccak algorithm is used in RSA digital signature work systems, the DSA signature

work system that uses the Keccak algorithm is better in terms of the signing process execution

time with a time difference of 5,224 seconds for valid data and 5,355 seconds for invalid data.

But for verifying comparisons, the RSA execution process is faster than DSA with a time

difference of 0.067 seconds for valid data and 0.070 seconds for invalid data. The Keccak

algorithm on DSA can fulfill three information security services, i.e. the authenticity of data

authentication, data integrity, and non-denial.

REFERENCES

[1] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and Privacy. United States of

America: O’Reilly Media, 2009.

[2] W. Stallings, Network Security Essentials: Applications and Standards, Fourth. Prentice

Hall: Pearson, 2013.

[3] C. F. Kerry and P. D. Gallagher, ―Digital Signature Standard (DSS),‖ Fed. Inf. Process.

Stand. Publ., vol. 186–4, no. July, 2013 [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[4] F. Kurniawan, A. Kusyanti, and H. Nurwarsito, ―Analisis dan Implementasi Algoritma

SHA-1 dan SHA-3 pada Sistem Autentikasi Garuda Training Cost,‖ vol. 1, no. 9, pp.

803–812, 2017 [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-

ptiik/article/download/247/110/

[5] M. J. Dworkin, ―FIPS PUB 202 SHA-3 Standard : Permutation-Based Hash and

Extendable-Output Functions,‖ NIST PUB Ser., vol. 202, no. August 04, 2015 [Online].

Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[6] M. A. Patil and P. T. Karule, ―Design and implementation of keccak hash function for

cryptography,‖ in 2015 International Conference on Communications and Signal

Processing (ICCSP), 2015, pp. 0875–0878 [Online]. Available:

http://ieeexplore.ieee.org/document/7322620/

[7] R. A. Azdy, ―Tanda tangan Digital Menggunakan Algoritme Keccak dan RSA,‖ Jnteti,

vol. 5, no. 3, pp. 184–191, 2016 [Online]. Available:

http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/download/255/190

[8] H. Gross, D. Schaffenrath, and S. Mangard, ―Higher-Order Side-Channel Protected

Implementations of KECCAK,‖ in 2017 Euromicro Conference on Digital System

Design (DSD), 2017, pp. 205–212 [Online]. Available:

http://ieeexplore.ieee.org/document/8049787/

[9] H. Mestiri, F. Kahri, B. Bouallegue, M. Marzougui, and M. Machhout, ―Efficient

countermeasure for reliable KECCAK architecture against fault attacks,‖ in 2017 2nd

International Conference on Anti-Cyber Crimes (ICACC), 2017, pp. 55–59 [Online].

Available: http://ieeexplore.ieee.org/document/7905263/

[10] A. R. Anggoro, ―Studi Mengenai Fully Homomorphic Encryption dan Perkembangannya

dari RSA sebagai Enkripsi Homomorfis Populer,‖ 2009 [Online]. Available:

http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2009-

2010/Makalah1/Makalah1_IF3058_2010_069.pdf

