
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.14, No.4, October 2020, pp. 331~340

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: https://doi.org/10.22146/ijccs.54170  331

Received February 11th,2020; Revised July 27th, 2020; Accepted October 30th, 2020

Resource Modification On Multicore Server With Kernel

Bypass

Dimas Febriyan Priambodo*
1
, Ahmad Ashari

2

1
Master Program of Computer Science, FMIPA UGM, Yogyakarta, Indonesia

2
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia

e-mail: *
1
priambododimas@gmail.com,

2
ashari@ugm.ac.id

Abstrak

Teknologi berkembang sangat cepat ditandai dengan munculnya banyak inovasi baik

dari hardware maupun software. Multicore server dengan jumlah core yang semakin banyak

menuntut software yang effisien. Kernel dan Hardware yang difungsikan menangani berbagai

kebutuhan operasional mempunyai beberapa keterbatasan. Keterbatasan ini disebabkan karena

tingkat kompleksitas yang tinggi khususnya dalam menangani kebutuhan sebagai peladen

seperti single socket discriptor, single IRQ dan kekurangan dalam pooling sehingga

memerlukan beberapa modifikasi. Metode kernel bypass merupakan salah satu metode untuk

mengatasi kekurangan dari kernel. Modifikasi pada server ini merupakan gabungan untuk

menaikkan throughput dan menurunkan latency server. Modifikasi pada level driver dengan

hashing rx signal dan modifikasi multiple receiver dengan multiple ip receiver, multiple thread

receiver dan multiple port listener digunakan untuk meningkatkan throughput. Modifikasi

menggunakan prinsip pooling baik pada level kernel atau level program digunakan untuk

menurunkan latency. Gabungan modifikasi ini menjadikan server menjadi lebih dapat

diandalkan dengan peningkatan througput rata-rata sebesar 250,44 % dan penurunan latency

65,83 %.

Kata kunci— hash rx, multiple ip, multiple port, multiple thread, pooling, bypass kernel

Abstract
 Technology develops very fast marked by many innovations both from hardware and

software. Multicore servers with a growing number of cores require efficient software. Kernel

and Hardware used to handle various operational needs have some limitations. This limitation

is due to the high level of complexity especially in handling as a server such as single socket

discriptor, single IRQ and lack of pooling so that it requires some modifications. The Kernel

Bypass is one of the methods to overcome the deficiencies of the kernel. Modifications on this

server are a combination increase throughput and decrease server latency. Modifications at the

driver level with hashing rx signal and multiple receives modification with multiple ip receivers,

multiple thread receivers and multiple port listener used to increase throughput. Modifications

using pooling principles at either the kernel level or the program level are used to decrease the

latency. This combination of modifications makes the server more reliable with an average

throughput increase of 250.44% and a decrease in latency 65.83%.

Keywords— hash rx, multiple ip, multiple port, multiple thread, pooling, kernel bypass

mailto:1priambododimas@
mailto:2ashari@ugm.ac.id

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 4, October 2020 : 331 – 340

332

1. INTRODUCTION

Shambharkar (2015) states several important issues to improve performance on

multicore systems [1]. Improved performance can be done by avoiding migration in multicore

systems and designing special techniques, tools or in the form of scheduling in the task / process

/ thread accompanied by affinity (mapping between software and hardware) to carry out the

process right on the specific core. The literature survey shows that in the default operating

system there is a problem that there is a transfer or migration of processes on several different

threads and requires some development and appropriate steps that result in an increase in

hardware process speed .

Research by Bo (2016) [2], Diener et al. (2016) [3], Paul, Bhattacharjee and Rajesh

(2014) [4], states that performance improvement is NUMA (Non-Uniform Memory Access).

NUMA can improve performance by reducing thread transfer through partitioning memory.

Contrary to some previous studies Majo & Gross, (2013) [5] shows the error of the researcher's

view of the NUMA concept which actually adds to problems in internal memory and reduces

process performance. Tang et al., (2013) [6] conducted NUMA research on gmail backend

server and frontend google search, giving the same result, which was a decrease in performance.

The decrease in performance is indicated by a data decrease of 15% with the AMD Barcelona

platform on Gmail Backend and by 20% with Intel Westmere for Web-search frontend.

The system built is a modification to avoid migration in multicore systems as well as

testing to provide data on the difference in processing speed between shared cores and dedicated

cores that often exist in a multicore processor. Modifications made based on kernel deficiencies

in the server computer into a better system are indicated by increased throughput and decreased

latency. Modifications made include the driver level which is intended to modify the signal

settings by modifying the hashing algorithm into a multi queue to overcome the shortcomings of

a single IRQ in the kernel. Modifications are also made to the kernel base of the port listener so

that there is no lock on the default kernel such as analysis (Rivera et al., 2014) [7] with binding

sockets so that each port can be used simultaneously by all CPUs without locking and waiting

processes that increase load from the processor. Modifications were also made to reduce

latency with pooling techniques on data packets so that it is expected to be able to avoid context

switching while addressing kernel shortages in flow control.

2. METHODS

The study began by examining the differences between shared cores and dedicated cores

by creating a workload looping program so that a time difference graph in milli seconds (ms) is

obtained. The results of determining the speed difference determine the server recommendations

later among multicore developments that use shared core or known as Hyper Threading (HT) on

Intel. The next step determines the amount of default server system throughput using a simple

sender and receiver program. The default standard number is used as a parameter for the success

of the modification in steps called kernel bypass later. Modifications that consist of hashing

signal receive which is intended to divide the signal into several queues which by default are

one queue on the ethernet card. Modifications are made by using multiple IP (Internet Protocol)

receivers which are intended to divide the load and the interrupt into several parts so that the

throughput is increased and to carry out affinity on the thread so it is called a multi-thread

receiver. This modification also overcomes the limitation of accepting interrupts, which is

almost impossible to accept data packets larger than each CPU processing because it is an

interrupt for an ethernet or peripheral. The next modification is performed by using a bind port

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Resource Modification On Multicore Server With Kernel Bypass (Dimas Febriyan Priambodo)

333

that is intended to create a multi socket listener so that it adjusts the analysis (Rivera et al.,

2014) [7].

To increase server reliability, an additional measurement parameter is given, namely

RTT (Round Trip Time) or the time required for the server to process the packet and return it.

RTT is obtained by modifying existing sender and receiver programs that are used to indicate

the time in milliseconds (ms). Modifications in this stage only use the principle of pooling.

Pooling used is applying 2 types of pooling in the kernel by calling the so_busy_pooling

function and using pooling inside code principle in the body program.

2.1. Modifications to Reduce Throughput

Resource Utilization Multicore Server with Kernel Bypass take over the main functions

of the kernel on the network using a new method by trying the hashing technique on the signal

that aims to divide the queue to be directed at the specific CPU as shown in Figure 1 but the

compatibility of the ethernet card is main problem with this hashing method.

Figure 1.Hashing signal process

This modification is carried out with the rx-flow-hash command followed by the

division tupple, i.e. ip address with the udp4 command and tupple port with the sdfn command

as show in figure 2. In this paper command sdfn not support. As describe above compability of

ethernet card is main problem to do more.

Figure 2. rx flow hash modification

The next modification uses multi IP (Internet Protocol) aimed at dividing the load and

dividing the CPU load so as to overcome CPU limitations in processing or processing IRQ

(Interupt Re Quest). This modification is common to perform and is not a new modification. In

this study the modification was undertaken by adding a new ethernet card with different IPs and

the sender was directed into 2 different Ips in figure 3

Figure 3. multiple ip modification

The concept of multi threading sender was adopted to make the next modification as

multi threading receiver. Same concept diferrent object to process more througput with couple

with multiple IP modification. This modification is performed with taskset -c 1,2 ./udpreceiver1

0.0.0.0:4321 2 which shows activating CPU 1 and 2 to run the udp receiver program. The use of

multi-thread receiver is the application of research (Rivera et al., 2014) [7]. The application of

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 4, October 2020 : 331 – 340

334

this modification allows a decrease in throughput so that it requires a modification to the socket

discriptor to avoid multiple cores locking describe in next modification.

Figure 4. Listener port modification Process

Resource Modification on Multicore Server with Kernel Bypass using a program to

overcome the struggle for lock as shown in Figure 4 is using multi listener so that each thread

uses a different listenner with the result that even though using the same port there is no

bottleneck. This multi listenner modification is undertaken before the accept () function.

Accepting connections generally does not fork or bind socket, so all cores use waiting mode. In

this study also applied affinity to IRQ NICs as a companion so as to improve the performance of

the process as carried out by (Tsai et al., 2012) [8].

Figure 5. source code of binding port

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Resource Modification On Multicore Server With Kernel Bypass (Dimas Febriyan Priambodo)

335

2. 2 Modifications to Reduce Latency

This paper use modified client server program to show latency. In client program send

packets and measure the time until response back. Server waits for packets and echoes them

back to the source. In the system design to reduce latency, modifications will be made to split

the queue from interrupt rx to be directed to the CPU list which aims to reduce excessive

interrupt handling on 1 (one) core. Interrupts will be placed sequentially on the CPU, RX queue

0 to CPU # 0, RX queue # 1 to CPU # 1 and so on as shown in Figure 6. This is also another

control besides the irq_balance solution.

Figure 6. Interupt handlilng modification

Modifications also use the pooling technique of network traffic to avoid context

switching. Pooling settings are done to avoid increasing processing time when a process is

undertaken by a different CPU. Pooling is performed in two stages, that is through pooling the

kernel that has been integrated in the linux kernel 3.11 or SO_BUSY_POLL.

The next Pooling stage is the one that is implemented in the receiver's body program so

that pooling becomes more effective. Pseudo Code show in figure 7. All modification is

effective as indicated by a reduction in the average latency to the default of 65.83%.

Figure 7. modified server program

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 4, October 2020 : 331 – 340

336

3. RESULTS AND DISCUSSION

3.1. Throughput

Table 1 Comparison of throughput modification

No Default NUMA Multiple IP Multiple thread Binding port

 Throughput

(pps)

Gap

(%)

Throughput

(pps)

Gap

(%)

Througput

(pps)

Gap

(%)

Throughput

(pps)

Gap

(%)

1 451,3k 430k 4,72

609k 34,94

495k 9,68

1114k 246,84

2 428k 5,16

657k 45,58

480k 6,36

1147k 254,16

3 432k 4,28

649k 43,81

461k 2,15

1126k 249,50

4 425k 5,83

653k 44,69

486k 7,69

1138k 252,16

5 427k 5,38

640k 41,81

490k 8,58

1142k 253,05

6 431k 4,50

651k 44,25

477k 5,69

1129k 250,16

7 428k 5,16

655k 45,14

485k 7,47

1131k 250,60

8 431k 4,50

623k 38,05

491k 8,80

1136k 251,72

9 433k 4,05

641k 42,03

481k 6,58

1121k 248,39

Table 1 shows the overall results of the modifications made in increasing throughput.

Modifications made can beat the NUMA method that has been used to increase throughput. The

use of multiple receiver threads experiences obstacles as exemplified by (Rivera et al., 2014)[7],

adopted to modification with binding port that can provide significant results in the process. The

results of the overall modification as set out in table 1, if calculated in an average will result in

an increase of 250.44%.

3.2. Latency

Table 2 Comparison of latency modification

no Default (ms) NUMA Gap

(%)

Busypool (ms) Gap

(%)

Pooling inside

code (ms)

Gap

(%)

1 57,224 56,646 1,01 49,886 12,82 37,426 65,40

2 60,170 55,216 8,23 50,224 16,53 40,399 67,14

3 61,892 54,891 11,31 50,960 17,66 39,086 63,15

4 58,672 53,228 9,28 49,706 15,28 36,128 61,58

5 60,065 49,781 17,12 50,676 15,63 38,412 63,95

6 57,640 52,248 9,35 50,469 12,44 39,018 67,69

7 61,042 52,817 13,47 49,102 19,56 40.124 65,73

8 58,671 50,890 13,26 51,610 12,03 38,798 66,13

9 61,672 51,743 16,10 49,718 19,38 41,006 66,49

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Resource Modification On Multicore Server With Kernel Bypass (Dimas Febriyan Priambodo)

337

Table 2 shows the overall results of the modifications made in reducing latency.

Modifications made after pinning and comparing using the so_busy_pool kernel. Pooling which

are performed on the body server program avoid blocking on.

4. CONCLUSIONS

Systems developed using kernel bypass are able to increase server capabilities as shown

by increasing throughput and decreasing latency compared to the default kernel. The results of

the experiment, the increase in average throughput was 250.44% and the decrease in average

latency was 65.83%.

REFERENCES

[1] Shambharkar, S. A. (2015). A Study on Setting Processor or CPU Affinity in Multi-Core

Architecture for Parallel Computing. International Journal of Science and Research, 4(5),

2013–2016.

[2] Bo, Z. (2016). Analysis of the Resource Affinity in NUMA Architecture for High

Performance Network. 2016 5th International Conference on Measurement,

Instrumentation and Automation, 547–550.

[3] Diener, M., Cruz, E. H. M., Alves, M. A. Z., Navaux, P. O. A., Busse, A., & Heiss, H. U.

(2016). Kernel-Based Thread and Data Mapping for Improved Memory Affinity. IEEE

Transactions on Parallel and Distributed Systems, 27(9), 2653–2666.

https://doi.org/10.1109/TPDS.2015.2504985

[4] Paul, M. V. V., Bhattacharjee, R., & Rajesh, R. (2014). Traffic capture beyond 10 Gbps:

Linear scaling with multiple network interface cards on commodity servers. Proceedings -

2014 International Conference on Data Science and Engineering, ICDSE 2014, 194–199.

https://doi.org/10.1109/ICDSE.2014.6974636

[5] Majo, Z., & Gross, T. R. (2013). (Mis) Understanding the NUMA Memory System

Performance of Multithreaded Workloads. IEEE International Symposium on Workload

Characterization (IISWC), 1–8.

[6] Tang, L., Mars, J., Zhang, X., Hagmann, R., Hundt, R., & Tune, E. (2013). Optimizing

Google’s warehouse scale computers: The NUMA experience. Proceedings - International

Symposium on High-Performance Computer Architecture, 188–197.

https://doi.org/10.1109/HPCA.2013.6522318

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 4, October 2020 : 331 – 340

338

[7] Rivera, D., Ach, E., & Bustos-jim, J. (2014). Analysis of Linux UDP Sockets Concurrent

Performance. 2014 33rd International Conference of the Chilean Computer Science

Society, 65–69.

[8] Tsai, W. Y., Huang, N. F., & Hung, H. W. (2012). A port-configuration assisted NIC IRQ

affinitization scheme for multi-core packet forwarding applications. GLOBECOM - IEEE

Global Telecommunications Conference, 2547–2552.

https://doi.org/10.1109/GLOCOM.2012.6503500

[9] Abel, F., Hagleitner, C., & Verplanken, F. (2012). Rx stack accelerator for 10 GbE

integrated NIC. Proceedings - 2012 IEEE 20th Annual Symposium on High-

Performance Interconnects, HOTI 2012, 17–24. https://doi.org/10.1109/HOTI.2012.18

[10] Angelo, G. D., Marchetti-spaccamela, A., & Cnr, I. (2016). Multiprocessor Real-Time

Scheduling with Hierarchical Processor Affinities. 2016 28th Euromicro Conference on

Real-Time Systems, 237–247. https://doi.org/10.1109/ECRTS.2016.24

[11] Fusco, F., & Deri, L. (2010). High Speed Network Traffic Analysis with Commodity

Multi-core Systems. proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, 218–224.

[12] Galagan, V., Yurchenko, O., Preobrazhensky, E., Zhuravkov, P., & Dombrougov, M.

(2013). Multi-gigabit intel-based software routers. Proceedings - RoEduNet IEEE

International Conference. https://doi.org/10.1109/RoEduNet.2013.6714193

[13] Gu, Q., Wen, L., Dai, F., Gong, H., Yang, Y., Xu, X., & Feng, Z. (2014). StackPool: A

high-performance scalable network architecture on multi-core servers. Proceedings -

2013 IEEE International Conference on High Performance Computing and

Communications, HPCC 2013 and 2013 IEEE International Conference on Embedded

and Ubiquitous Computing, EUC 2013, 17–28.

https://doi.org/10.1109/HPCC.and.EUC.2013.13

[14] Hanford, N., Ahuja, V., Farrens, M., Ghosal, D., Balman, M., Pouyoul, E., & Tierney, B.

(2014). Analysis of the Effect of Core Affinity on High-Throughput Flows. 4th

International workshop on Network-Aware Data Management, 9–15.

[15] Hanford, N., Ahuja, V., Farrens, M., Ghosal, D., Balman, M., Pouyoul, E., & Tierney, B.

(2015). Improving network performance on multicore systems : Impact of core affinities

on high throughput flows. Future Generation Computer Systems.

https://doi.org/10.1016/j.future.2015.09.012

[16] Hanford, N., Farrens, M. K., Pouyoul, E., & Tierney, B. (2014). Characterizing the

Impact of End-System Affinities On the End-to-End Performance of High-Speed Flows.

ACM/IEEE symposium on Architechtures for Networking and comunications System,

259–260.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Resource Modification On Multicore Server With Kernel Bypass (Dimas Febriyan Priambodo)

339

[17] He, P., Wang, J., Deng, H., & Zhang, W. (2010). Balanced locality-aware packet

schedule algrorithm on multi-core network processor. Proceedings of the 2010 2nd

International Conference on Future Computer and Communication, ICFCC 2010, 3,

248–252. https://doi.org/10.1109/ICFCC.2010.5497642

[18] Huang, C., Yu, X., & Luo, H. (2010). Research on high-speed network data stream

capture based on multi-queue NIC and multi-core processor. ICIME 2010 - 2010 2nd

IEEE International Conference on Information Management and Engineering, 2, 248–

251. https://doi.org/10.1109/ICIME.2010.5477440

[19] Jie, L., Shuhui, C., & Jinshu, S. (2016). Implementation of TCP large receive offload on

multi-core NPU platform. 2016 International Conference on Information and

Communication Technology Convergence, ICTC 2016, 258–263.

https://doi.org/10.1109/ICTC.2016.7763481

[20] Jin, H. W., Yun, Y. J., & Jang, H. C. (2008). TCP/IP performance near I/O bus

bandwidth on multi-core systems: 10-Gigabit ethernet vs. multi-port gigabit ethernet.

Proceedings of the International Conference on Parallel Processing Workshops, 87–94.

https://doi.org/10.1109/ICPP-W.2008.33

[21] Li, Y., & Qiao, X. (2011). A Parallel Packet Processing Method on Multi-core Systems.

2011 10th International Symposium on Distributed Computing and Applications to

Business, Engineering and Science, 78–81. https://doi.org/10.1109/DCABES.2011.11

[22] Nelms, T., & Ahamad, M. (2010). Packet Scheduling for Deep Packet Inspection on

Multi-Core Architectures. Architectures for Networking and Communications Systems

(ANCS), 2010 ACM/IEEE Symposium on, 1–11.

https://doi.org/10.1145/1872007.1872033

[23] Orosz, P. (2012). Improving Packet Processing Efficiency on Multi-core Architectures

with Single Input Queue. Carpathian Journal of Electric and Computer Engineering, 5,

44–48.

[24] Sibai, F. N. (2010). Simulation and performance analysis of multi-core thread scheduling

and migration algorithms. CISIS 2010 - The 4th International Conference on Complex,

Intelligent and Software Intensive Systems, 895–900.

https://doi.org/10.1109/CISIS.2010.17

[25] Tsujita, Y., Hori, A., & Ishikawa, Y. (2014). Affinity-Aware Optimization of

Multithreaded Two-Phase I / O for High Throughput Collective I / O. international

Conference on High Performance Computing & Simulation, 210–217.

[26] Velkoski, G., Ristov, S., & Gusev, M. (2013). Affinity-aware HPC Applications in

Multichip and Multicore Multiprocessor. Information Technology Interfaces (ITI),

Proceedings of the ITI 2013, 95–100.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 4, October 2020 : 331 – 340

340

[27] Zou, H., Sun, X., Ma, S., & Duan, X. (2012). A Source-aware Interrupt Scheduling for

Modern Parallel I / O Systems. 2012 IEEE 26th International Parallel and Distributed

Processing Symposium, 156–166. https://doi.org/10.1109/IPDPS.2012.24

