
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 

Vol.14, No.4, October 2020, pp. 417~428 

ISSN (print): 1978-1520, ISSN (online): 2460-7258  

DOI: https://doi.org/10.22146/ijccs.59869             417 

 

Received September 18th,2020; Revised October 27th, 2020; Accepted October 30th, 2020 

Entity Profiling to Identify Actor Involvement in Topics  

of Social Media Content  
 

 

 

Puji Winar Cahyo
*1

, Muhamad Habibi
2 

1,2
Department of Informatics, FTTI UNJANI, Yogyakarta, Indonesia 

e-mail: 
*1

pwcahyo@gmail.com, *
1
muhammadhabibi17@gmail.com 

 

 

Abstrak 

Efisiensi dalam penggunaan media sosial mempengaruhi sifat dan cara komunikasi 

masyarakat modern, mereka lebih tertarik membicarakan sesuatu melalui media sosial 

daripada bertemu secara langsung di dunia nyata. Jumlah banyaknya pembicaraan pada suatu 

konten di media sosial bergantung pada topik yang dibicarakan, semakin menarik topik maka 

ketersediaan data di media sosial semakin meningkat. data tersebut dapat digunakan untuk 

melakukan analisis pengaruh aktor (akun mention) pada topik pembicaraan. Tingkat pengaruh 

suatu aktor dapat diukur dari berapa seringnya aktor tersebut dimention pada pembicaraan. 

Makalah ini bertujuan melakukan enitity profiling pada konten media sosial untuk melakukan 

analysis pengaruh suatu aktor pada topik perbincangan. selanjutnya dengan menggunakan 

analisis sentimen dapat diketahui sentimen topik pembicaraan mengenai aktor tersebut.  

Metode Latent Dirichlet Allocation (LDA) digunakan untuk menganalisis dan memodelkan 

topik, sedangkan Support Vector Machine (SVM) digunakan untuk analisis sentimen. Hasil 

eksperimen menunjukkan bahwa pada topik dengan sentiment positive lebih mengarah pada 

keterlibatan akun penanggulangan bencana, sedangkan topik dengan sentiment negative lebih 

mengarah pada keterlibatan akun politisi, kritikus dan berita online. 

 

Kata kunci— Entity Profiling, Pemodelan Topik, Analisis Sentimen, LDA, SVM 

 

 

Abstract 
The efficiency of using social media affected modern society's nature and 

communication; they are more interested in talking through social media than meeting in the 

real world. The number of talks on social media content depends on the topic being discussed. 

The more topic interesting will impact the amount of data on social media will be. The data can 

be analyzed to get the influence of actors (account mentions) on the conversation. The power of 

an actor can be measured from how often the actor is mentioned in the conversation. This paper 

aims to conduct entity profiling on social media content to analyze an actor's influence on 

discussion. Furthermore, using sentiment analysis can determine the sentiment about an actor 

from a conversation topic. The Latent Dirichlet Allocation (LDA) method is used for analyzes 

topic modeling, while the Support Vector Machine (SVM) is used for sentiment analysis. This 

research can show that topics with positive sentiment are more likely to be involved in disaster 

management accounts, while topics with negative sentiment are more towards involvement in 

politicians, critics, and online news. 
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1. INTRODUCTION 

 

Modern society makes social media an essential part of life. In addition to the harmful 

risks that arise, social media's benefits can support progress in several aspects. Such as the use 

of social media in the company's new product introduction survey to the public. The survey 

results are considered to be more efficient and give quite a positive impact. However, company 

members' active ability is needed to disseminate product information through social media [1]. 

Another use of social media is used to support the winning of the United States' presidential 

election. An analysis of public perceptions is a supporting parameter for increasing public 

interest in presidential candidates [2]. 

Efficiency in the use of social media affects the nature and way of communication of 

modern society. They are more interested in talking about something through social media than 

meeting in person in the real world. Not only that, but it is also supported by the freedom of 

society to be able to express or have an opinion. The amount of data on social media content 

depends on the attractiveness of a topic being discussed. The more interesting the issue being 

discussed, the availability of data on social media will increase. This can be used as a basis for 

analyzing the level of the actor's influence (account mention) on the topic of conversation. The 

level of influence can be measured by how often actors are discussed. To produce data on 

popular actor trends that can be searched for the sentiment of the conversation. These 

sentiments can be used as a basis for assessments to support decision making on popular issues 

that are currently being discussed. 

Entity profiling is used to detect the relationship of actors to a topic being discussed. 

Entity profiling is worth researching, considering that social media is currently widely used to 

discuss hot issues that lead to a topic of conversation. Research on user profiling using temporal 

analysis based on tweet time intervals, it can be carried out to form clusters of recommended 

groups of hashtags and similar users to follow [3]. In the other case, clustering can be used to 

determine student profile base on learning achievement [4]. Not only that, entity profiling can 

be expanded to users' behavioral profiling with the similarity of tweet content attributes, post 

time, hashtag, and geolocation [5]. Also, Entity profiling can be done by linking account 

ownership detection with other open data, for example, wikidata [6]. The comparison of several 

methods that have been applied to this research is to use different stages of profiling. This 

research leads to collaboration between topic modeling, sentiment analysis, and entity search to 

form entity profiling of actors on the discussion topic's sentiment polarity. 

This study focuses on conducting entity profiling on data on topics now being discussed 

on social media, Twitter. This research analyzes the sentiment on the tweet, then modeling the 

topic on the tweet. This process will produce topic segments that have positive and negative 

sentiment polarity values. The next step is to determine entity profiling to determine the actors 

involved in a conversation topic. So that specific topics can be identified as the value of the 

polarity of sentiment and its actors. 

This study uses the Support Vector Machine (SVM) method to analyze sentiment 

regarding data on topics often discussed on Twitter social media. SVM method assigns values to 

selected words and phrases to create a text classification model [7]. SVM has a solid foundation 

and can perform classification with a higher accuracy level than other algorithms, especially 

high-dimensional data. One example is that SVM has the highest accuracy in domain text 

classification, as shown in the various research [8]. SVM is known as a method that has 

excellent accuracy values for classifying text data. One of the SVM applications for text 

classification is thesis title classification [9] and student comment classification [10]. 

Meanwhile, for modeling this research topic using the Latent Dirichlet Allocation 

(LDA) method. LDA is an unsupervised technique that automatically creates topics based on 

patterns of (co) occurrence of words in the documents that are analyzed [11]. Research related 
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to topic modeling using LDA includes modeling topics related to online hotel service reviews 

[12], modeling topics on scientific articles [13], modeling topics regarding road traffic [14], and 

modeling topics related to "ethnic marketing" at 239 journal articles published by nine major 

publishers [15]. 

 

2. METHODS 

2. 1 Tweet Data Extraction and Preprocessing 

This research was conducted in several stages, including data extraction, preprocessing, 

sentiment analysis, topic modeling, topic analysis, entity profiling, and analyzing popular actors 

in a topic based on sentiment polarity. The stages of this research can be seen in Figure 1. 

 

 
Figure 1  Research Stages 

 

The data collected from 19 March to 13 July 2020. We managed to collect 263,125 

tweets related to COVID-19. The data was obtained using the keyword "wabah corona". After 

the data has been collected, the next step is preprocessing. In general, the data tweets contain a 

lot of noise, such as meaningless words, misspelled words, including various abbreviations and 

slang words. These words often interfere with and reduce the performance of the resulting 

classification model. Therefore, tweets have to be preprocessed before actually extracting the 

features from them. The preprocessing steps that we take on the tweet data to be processed are: 

 Tokenization: the process of dividing the text into specific parts. 

 Normalization: brings the text to its standard form. The general normalization techniques 

used are as follows: 

⁃  Case Folding: changes uppercase to lowercase 

⁃  Elimination of periods in terms. - for example, M.C.S. to the MCS 

⁃  Remove hyphens in a term. - for example, a medical-doctor to become a medical doctor. 

 Cleaning: The steps in cleaning tweet data are as follows, remove the URL that is in the 

tweet, remove the hashtag (#) that is in the tweet, remove the number that is in the tweet, 

remove punctuation marks, such as question marks, exclamation points, periods, and others. 

And remove Unicode and symbols. 

 Stopword Removal: delete deemed meaningless words using the stopword list. 

2. 2 Sentimen Analysis  

Sentiment Analysis is the extraction of information that aims to obtain information 

about the author's feelings in positive or negative comments, questions, and requests by 

analyzing massive amounts of documents [16]. Sentiment analysis analyzes opinions, 

sentiments, evaluations, judgments, attitudes, and emotions of people towards product entities, 

administrative services, individuals, problems, events, topics, and attributes [17]. 

SVM is a Support Vector Machine. It is a non-probabilistic binary linear classifier. For 

a training set of points        ,   is a feature vector, and y is the class. To determine the 

maximum margin hyperplane that divides the points with   = 1 and    = 1. The equation of the 
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hyperplane is;        . For a data set consisting of features set and labels set, an SVM 

classifier builds a model to predict the new examples' classes. It assigns a new case or data 

points to one of the categories [18].  

Algorithm:  

a) Define an optimal hyperplane  

b) Extend step I for nonlinearly separable problems  

c) Map data to high dimensional space where it is easy to classify with linear decision 

surfaces. 

2. 3 Topic Modeling  

Latent Dirichlet Allocation (LDA) is a generative probabilistic model for discrete data 

groups [19]. LDA is an unsupervised machine learning technique. This method aims to model 

documents that arise from various topics, where the topic is defined as the distribution of fixed 

word terms [20]. There are three generative processes for each document in the collection [21]. 

First, select a topic randomly from its distribution of topics for each document—the second step 

sample word distribution of words related to the chosen topic. Third, repeat the process for all 

words in the document. The visualization of LDA model representation can be seen in Figure 2 

below. 

 
Figure 2 LDA model representation [19] 

 

Figure 2 shows the three levels of LDA representation. The first level is corpus-level 

parameters, which are represented by symbol α and β. These corpus-level parameters are 

assumed to be sampled once in the process of generating a corpus. Secondly, document-level 

variables (θ) were tested once for each document—finally, word-level variables symbolized by 

z and w. Word-level variables are sampled once for each word in each document. 

2. 4 Entity Profiling 

Entity profiling is extracting complete information about an entity using available data 

[22]. Extracting information on the Instagram platform is often necessary to determine how 

actor activities impact his followers [23]. In the Twitter platform, extracting information is 

generally carried out on actors' involvement on a conversation topic, which is generally marked 

with the hashtag # [24]. From the conversation topic, actors can be obtained by detecting named 

entities [25] or detecting mention @ in tweet content. Users can mention actors in a tweet and 

retweet due to several factors, including 1) influence is the actor's suitability factor with the 

context. 2) active users in using Twitter. 3) location of Twitter users [26]. This research seeks to 

detect actor sentiment by using mention @ on the topic of discussion. It is used to determine 

how many actors are talked in a positive or negative context. 
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3. RESULTS AND DISCUSSION 

3.1 Sentiment Analysis 

At this stage, we use the Support Vector Machine (SVM) method to classify sentiment 

polarity. We used 24,779 tweets for the training process, which will later create a classification 

model. The use of the SVM method for classification because it provides better accuracy results 

compared to other methods [27]. The evaluation methods used to see the SVM classification 

model's performance are precision, recall, accuracy, and F1-Score [28]. Evaluation of classifier 

performance is useful for seeing which classification method has a better performance value. 

The classification performance evaluation results show the amount of Precision 0.81, Recall 

0.81, accuracy 0.81, and F-Score 0.81. 

The sentiment polarity classification results from the COVID-19 tweet data show that 

the data is dominated by negative sentiment rather than positive sentiment. Tweets with 

negative sentiment had the number 257155, while tweets with positive sentiment had the 

number 5899. The results mean that the Indonesian people provide more negative opinions 

regarding the COVID-19 pandemic. Various things can trigger this negative opinion. It could be 

from government policies towards handling COVID-19 or even public complaints due to the 

COVID-19 pandemic. 

3.2 Topic Analysis 

In this experiment, we analyzed of the topic segment with a predetermined number of 

topics, namely 30 topics. This visualization is to show a physical representation of the word 

frequency distribution on each topic. After building topic segments with a predetermined range, 

evaluate the number of topic segments most suitable for further analysis. This study uses topic 

coherence to determine the ideal number of topic segments. Topic Coherence scored a topic by 

measuring the semantic similarity between words with a high score on a topic. This measure 

helps distinguish between topics that can be interpreted semantically and topics that are the 

result of human interpretation [29]. Topic Coherence is another way of evaluating topic models 

with much greater assurance of human performance. Figure 3 shows the results of measuring 

the amount of topic suitability using topic coherence. 

 

 
Figure 3  Coherence score of each number of topics 

 

Based on Figure 3, it can be seen that the most suitable number of topic segments is the 

four topic segments with the highest topic coherence value, namely 0.45567. Therefore, the 
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subsequent analysis uses four topic segments. Figure 4 is a visualization of the distance map 

between topics generated for four topic segments. 

Based on the frequency of words on each topic, analysis can be carried out related to the 

topic being discussed. Topic 1 is most concerned by the public regarding the COVID-19 

pandemic, amounting to 33%. The topic discusses religious worship activities, in particular 

discussing preparation for activities in the month of Ramadan. Many Indonesians, especially 

Muslims, are restless because they cannot perform worship activities in mosques. The 

restlessness was due to the government's appeal to carry out Ramadan's worship activities at 

home [30]. 
 

 
Figure 4  Intertopic Distance Map Visualization 

 

Topic 2 discusses the impact of Indonesia's economy during the COVID-19 pandemic, 

with a percentage of the number of tweets of 23%. The economic sector is the sector most 

affected by COVID-19, many large and small industries have closed, and many workers have 

been laid off. Indonesia's economic growth reached its lowest point in the second quarter of 

2020. The government is expected to provide loans to small industries [31], which will absorb 

an additional workforce of 15 million people or 11.84 percent of the total workforce [32]. 

Furthermore, topic 3 discusses education during the COVID-19 pandemic, with a percentage of 

21% tweets. Students have faced various problems related to anxiety, depression, poor internet 

connection, and unfavorable learning environments at home [33]. The issue of online learning is 

a problem that needs to be addressed by the government. Because so many students and parents 

complain about online learning, the learning process is not optimal. 

The last topic, topic 4, discusses government policies during the COVID-19 pandemic 

with a percentage of 23% tweets. One of the successful handlings of COVID-19 is through 

procedures carried out by the government. The government needs to monitor and evaluate the 

COVID-19 handling protocol. This action is necessary because public perceptions are strongly 

influenced by the government's primary health care approach, impacting changing people's 

behavior [34]. The more people who care about the impact of COVID-19, the spread of 

COVID-19 will decrease. The data on the percentage distribution of tweets on each topic can be 

seen in Figure 5. 
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Figure 5  Distribution of tweets on each topic 

3.3 Sentiment Analysis over Topic Category 

This section outlines each topic's sentiments discovered in the previous area to 

complement the analytical perspective. Figure 6 shows the proportion of sentiment for each 

topic. We can see that all topics have a larger share of negative sentiment than positive 

sentiment. Topic 1, which discusses religious worship activities during the COVID-19 

pandemic, has the highest negative tweets—then followed by topic 3, which discusses 

government policies in handling COVID-19 in second place, and topic 2 in the third, which 

discusses the economic impact of COVID-19. And in fourth place is topic 3, which discusses 

education during the COVID-19 pandemic. The results of these sentiments show that COVID-

19 harms all aspects of human life so that most people give negative opinions in response to 

their complaints. 

 
Figure 6  Sentiment proportion of each topic 

3.4 Entity Profiling 

The results of topic modeling from sentiment analysis show that overall topics are more 

likely to have a more significant negative sentiment than positive sentiment. We can be 

continued to entity profiling from topic modeling. It searches actors who are most discussed on 

each topic. The results of the top 10 discussions of actors are presented in Figure 7 to Figure 10. 

It can be seen from Figure 7 that the community's response to @bnpb_indonesia's 

actions for handling the corona outbreak, especially in anticipation of religious activities, is 

considered quite positive, followed by the Director of Disaster Management Strategy 

Development himself, namely @aw3126. This was supported by a survey that showed that the 

Task Force's performance for the Acceleration of Handling COVID-19 received complimentary 

views from the public [35]. Meanwhile, negative talk about anticipation of religious activities 
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involving the @ginasnoer account is the highest, the second position, and so on involved a lot of 

online media including @detikcom, @bbcindonesia, and @cnnindonesia. Online media 

accounts have reported a lot about worship activities during the COVID-19 pandemic [36], [37],  

so that many tweets have led to negative sentiment. 

 
Figure 7 Popular Actor on Topic 1 

 
Figure 8 Popular Actor on Topic 2 

 

As for Figure 8, it can be seen that community discussion is more likely to have an 

economic impact. Discussions with positive responses involved the most personal accounts, 

including @irfan_nurrudin, @dr_koko28, and @rindu_muhr015, while online news accounts 

involved @kompascom and @detikcom. Meanwhile, the negative talks involved accounts 

@kumparan, @jokowi, and @K1ngPurw4. As is known, the @K1ngPurw4 account is still 

suspended while the other accounts are still active. Accounts @kompascom, @detikcom, 

@kumparan issued news that highlighted Indonesia's economic conditions during the COVID-

19 pandemic. Many tweets related to the economy mention the president's account @jokowi to 

convey people's aspirations. 

 
Figure 9 Popular Actor on Topic 3 
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Figure 10 Popular Actor on Topic 4 

 

Unlike the previous topic, in Figure 9, the community discussion about education 

during the pandemic period, the positive response involved more personal accounts with a 

discussion of no more than 100 mentions. Meanwhile, negative talk about education during the 

pandemic was more on individual tweets belonging to @sudjiwotedjo, @kopiganja, and 

@hincapandjaitan. Meanwhile, online news accounts include @cnnindonesia, @detikcom, 

@kumparan, and @bbcindonesia. One of the tweets from @sudjiwotedjo that went viral is that 

with the COVID-19 outbreak, parents who before the pandemic did not care about their child's 

education now can focus more on educating their children at home [38]. 

Figure 10 shows that there is only a little positive data from the government policy 

community's discussion regarding Indonesia's corona outbreak. This discussion involves several 

accounts, including @ dr_koko28, @jokowi, and @dondihananto. Meanwhile, the negative 

debate shows that there are quite many data, including the accounts @jokowi, @jansen_jsp, and 

@teofillin. The @jokowi and @jansen_jsp accounts are presidents and political figures, while 

the @teofillin account is a personal account that tweeted quite a lot of 124.2 thousand tweets. 

Discussions related to government policies regarding the corona outbreak in Indonesia involve 

many political members' accounts because political interests strongly influence government 

policies. Besides, the president's account @jokowi is included in the policy discussion because 

it has high policymaking authority. 

 

 

4. CONCLUSIONS 

 

This study succeeded in analyzing four topics from the tweet data with the keyword 

"wabah corona". From the topic modeling results, sentiment analysis was carried out to 

determine the polarity of sentiment on each topic discussed. The total number of topics 

generated has a more significant share of negative sentiment than positive sentiment. These 

results mean that Indonesians give more negative opinions regarding the COVID-19 pandemic. 

Various things can trigger this negative opinion; it could be from government policies towards 

handling COVID-19 or even public complaints due to the COVID-19 pandemic. The 

experimental results show that topics with positive sentiment are more likely to be involved in 

disaster management accounts, while topics with negative sentiment are more towards 

involvement in accounts of politicians, critics, and online news. 
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