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Abstrak 

Ujaran kebencian muncul seiring dengan pesatnya perkembangan media sosial. Ujaran 

kebencian sering kali dikeluarkan karena kurangnya kesadaran publik tentang perbedaan 

antara kritik dan pernyataan yang dapat berujung pada ujaran kebencian. Oleh karena itu, 

sangat penting dilakukan deteksi dini terhadap kalimat yang akan dituliskan sebelum 

menimbulkan tindak pidana akibat ketidaktahuan masyarakat. Dalam penelitian ini, kami 

memanfaatkan pembelajaran mesin dalam untuk memprediksi apakah sebuah kalimat 

mengandung ujaran kebencian dan nada kasar. Kami menunjukkan kehandalan word 

embedding dan penyematan kontekstual (contextual embedding) untuk mendapatkan informasi 

semantik dalam kata-kata ujaran kebencian pada model yang dikembangkan. Selain itu, 

representasi penyematan dokumen melalui jaringan saraf berulang dengan gated recurrent unit 

digunakan sebagai arsitektur utama untuk memperkaya representasi dari penyematan dokumen. 

Dibandingkan dengan representasi sintaksis dari pendekatan sebelumnya, penyematan 

kontekstual dalam model kami terbukti memberikan peningkatan yang signifikan pada performa 

model dengan margin yang signifikan. 

 

Kata kunci—ujaran kebencian, pemrosesan bahasa natural, jaringan saraf dalam, penyematan 

kontekstual, jaringan syaraf berulang 

 

 

Abstract 
 Hate speech develops along with the rapid development of social media. Hate speech is 

often issued due to a lack of public awareness of the difference between criticism and statements 

that might contribute to this crime. Therefore, it is essential to do early detection of sentences 

written before causing a criminal act due to public ignorance. In this paper, we use the 

advancement of deep neural networks to predict whether a sentence contains a hate speech and 

an abusive tone. We demonstrate the robustness of different word and contextual embedding to 

represent the semantic of hate speech words. In addition, we use a document embedding 

representation via recurrent neural networks with a gated recurrent unit as the main 

architecture to provide richer representation. Compared to the syntactic representation of the 

previous approach, the contextual embedding in our model proved to give a significant boost to 

the performance by a significant margin. 

 

Keywords—hate speech, natural language processing, deep neural network, contextual 

embedding, recurrent neural network 
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1. INTRODUCTION 
 

Hate speech is an expression, writing, action, or performance intended to provoke 

violence or discrimination against someone based on the characteristics of the community they 

represent, such as race, ethnicity, gender, sexual orientation, religion, and other characteristics 

[1]. Hate speech develops along with the rapid development of social media. It is a problem that 

affects the dynamics and interactions of the online social community. In the last two years, a 

criminal act of hate speech has been committed. Hate speech is often issued due to a lack of 

public awareness of the difference between criticism and statements that might contribute to this 

crime. Therefore, it is essential to do early detection of sentences written before causing a 

criminal act due to public ignorance. 

Furthermore, Indonesia governs hate speech in the Electronic Information and 

Transactions (UU ITE) Law No. 11 of 2008, amended by Law No. 19/2016. The law includes 

prohibitions and criminal threats for offenders who make hate speech or fake news. Article 28 

paragraph (1), under Article 45 of this Law, includes criminal threats against anyone who 

spreads false and misleading information that causes customer losses in electronic transactions 

knowingly and without authority [2]. One way to deal with hate speech found on online 

platforms is by reporting the content to the authorities and removing the content. Other actions 

in overcoming hate speech are by conducting surveillance, advocacy, and counter-speech [3]. 

However, these approaches are time-consuming and require human labour. 

In addition to the previously mentioned countermeasures, some researchers have 

attempted to counteract hate speech through machine learning. Machine learning has proved to 

be a good tool for understanding human language. Machine learning disciplines that specifically 

deal with human language are called Natural Language Processing (NLP). Most of the current 

NLP approach uses a supervised learning algorithm. Supervised learning requires human 

intervention, which acts to label the sentences that are deemed to be hate speech or not. 

Differences in opinion among humans about whether a piece of writing is hate speech or not are 

part of the difficulties in determining hate speech. This represents the risk of misclassification in 

machine learning algorithms which are then trained using human labelling. For example, in a 

bag-of-words approach, we can have a dictionary of words that are classified as hate speech, 

such as "black", "gay", and "transgender". Currently, most of the language resources for NLP 

are developed for English. This poses an additional challenge for detecting hate speech in 

another language. This research aims to predict hate speech in Bahasa Indonesia, which gives 

another challenge to the language model. 

As we mentioned in the previous paragraph, most of the research tackles hate speech 

detection problems as a supervised classification task by applying a machine learning approach. 

Spertus [4] utilizes machine learning with a decision tree algorithm to automatically detect 

messages containing offensive language on social media. Vigna and Warner [1], [5] use the 

Support Vector Machine (SVM) algorithm. This algorithm has an accuracy rate of 80% in the 

automatic detection of hate speech. 

Several studies used simple linguistic features such as Bag of Words (BoW), n-gram, 

and Part-of-Speech (PoS) as fundamental features. Waseem and Hovey [6] conducted a study to 

detect hate speech on the Twitter platform. Researchers classified hate speech into two classes, 

namely racism and sexism. The author uses several features, such as n-gram characters, along 

with the user's demographic, linguistic, and geographic features. The results showed that the n-

gram character with n = 4 gave the best results, and adding the user's gender feature could result 

in a slight improvement. Word embedding features, such as paragraph2vec [7], [8], are also 

used to classify user comments. Nobata et al. [8] combined the paragraph2vec feature with 

several features, such as n-gram features, linguistics and syntax, and semantic distribution. The 

addition of features shows an increase in the area under the curve (AUC) compared to only 
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using the paragraph2vec feature. 

Aside from the supervised approach, Watanabe et al. [9] apply unsupervised machine 

learning with lexical features and word rules to detect sentiment in the text. The algorithm's 

focus is on word features, emoticons, hashtags, punctuation, and grammatical patterns. In 

addition, to detect harsh words in the text, they used a dictionary-based approach. Research on 

automatic hate speech detection using this grammatical feature is often used in English texts 

because English has a standard grammatical pattern. Meanwhile, the extraction of grammatical 

features in Indonesian, such as part-of-speech markers and automatic dependency parsers, 

remains limited. 

Along with the development of research in the field of deep neural networks (DNN), 

some researchers [5], [10], [11] use DNN to solve the problem of automatic hate speech 

detection. The deep learning method uses word embedding to represent the features of the text. 

This feature can detect words that contain hate speech more effectively than syntax and 

linguistic features. The deep learning architectures that are often used are Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN), especially Long-Short Term Memory 

(LSTM). CNN's performance in the baseline dataset [6] has an F1 measure score of about 80% 

[12], [13]. Zhang et al. [14] combined the CNN architecture with Gated Recurrent Units (GRU) 

to improve CNN's performance. Several studies have shown that LSTM has better performance 

than CNN [10], [15], with an F1 score of 93%. 

Our contribution to this paper is two-fold. Firstly, we used various contextual 

embedding and stacking between different contextual embedding approaches for hate speech 

detection in Indonesian. Secondly, we can outperform the performance of the prediction 

compared to the previous work. We use the advancement of deep neural networks to predict 

whether a sentence contains a hate speech sentiment. Furthermore, we predict whether a 

sentence contains abusive language. Finally, to provide richer representation, we use a text 

embedding representation through a recurrent neural network (RNN) with GRU as the main 

architecture.  

This paper consists of 4 sections. The first section introduces the motivation for our 

work. We describe our method in detail in Section 2. The result of our experiment is described 

in Section 3, and finally, we conclude our work in Section 5. 

2. METHODS 

The method of detecting hate speech uses a supervised learning approach with 

contextual embedding and a recurrent neural network. Data that has been labelled hate speech 

and not hate speech is the primary input in machine learning. This study uses the recurrent 

neural network (RNN) representation that studies sequential patterns of text. Unlike previous 

studies [16], [17], we did not pre-process the data because we assumed that each word 

occurrence would determine a sequential pattern that could lead to hate speech or not. Before 

entering into the RNN document representation, we tokenize and pass each word token into the 

token embedding. Then document embedding will combine the token model into one document 

embedding vector. The document embedding representation becomes an input classifier that 

will determine whether the sentence is hate speech or not. The architecture of our model can be 

seen in Figure 1. 

2.1 Dataset  

This study used two datasets on hate speech on social media from Alfina [16] and 

Ibrohim [17]. Both of these datasets contain Indonesian tweets. In Alfina's dataset, 260 tweets 

have been annotated hate speech and 453 tweets that are not hate speech. Here are two examples 

of hate speech from the first dataset: 
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 kebiadaban ahok cina kafir anak2 rakyat kecil pribumi dan ibu2 islam semua digusur 

dari rumahnya serta kehidupannya (In English: The savagery of Chinese ahok kafir, the 

children of the indigenous small people and Muslim mothers are all evicted from their 

homes and their lives) 

 perempuan kaya lo mending mati aja deh, jelek aja, gausa sok jadi make up artist! (In 

English: A woman like you should just die, it's ugly, I can't pretend to be a make-up 

artist!) 

Here are two examples of non-hate speech data in the first dataset [16]: 

 Rencana Bapak yang di surga itu lebih indah yangg kita inginkan bapak ahok tetap 

semangat ya pak  (In English: Your plan in heaven is more beautiful. We want you to 

keep your spirits up, sir) 

 Itu yang ngomong jangan pilih Ahok Djarot pernah ngerasain banjir ga sih? (In 

English: That's the one who says don't choose Ahok Djarot, have you ever experienced 

floods?) 

 

 
 

Figure 1. The architecture of our model. The model starts with the sentence, which then chunked into 

tokens. Aside from words, the tokens can be chunked into characters. These tokens are then represented 

in token embeddings. The dashed embeddings indicate that the embedding can be stacked with another 

embedding to provide a richer representation. The token embeddings were then combined with document 

recurrent neural network embedding. Finally, the model will predict the class's output, treated as a multi-

label classification in this architecture. 

 

In the second dataset from Ibrohim, 5,540 tweets have been annotated with hate speech 

and 7,593 tweets that are not hate speech. Here are two examples of hate speech data in the 

second dataset [17]: 

 Amit amit itu mulut apa congor satwa yang namanya anjing sih (In English: God forbid 

is the mouth of an animal called a dog) 

 hari hari makan babi berbentuk wang haram. muka pun mcm babi. perangai lebih babi 

dari babi. politikus ronggeng babi (In English: everday eating a haram pig. even face 

like a pig. the temperament of a pig more than a pig. ronggeng pig politician) 
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Here are two examples of non-hate speech data in the second dataset [17]: 

 Anggota TNI, Polri, dan PNS Bisa Kredit Rumah Tanpa DP (In English: Members of 

the TNI, Polri, and Civil Servants Can Home Loans Without Down payment) 

 Ada tas aneh yg di sinyalir ada bom di dalam nyaa ...Depok siaga lagi ini Hadeh (In 

English: There is a strange bag that indicates there is a bomb in it ... Depok is on 

standby again, Gosh) 

We got the two datasets from Alfina's Github 
1
 and Ibrohim's 

2
. The two researchers did 

not provide the training and testing fold in their experiments. Thus, we took the initiative to 

divide the two datasets ourselves in training and testing to test and compare the model's 

performance with the two baselines that have been carried out [16], [17]. 

2.2 Token Embedding  

The first step in our method is the creation of a token embedding. In this study, we did 

not pre-process the data so that every word in the input sentence was converted into tokens. We 

perform tokenization by dividing the sentence into words. In the flair embedding method, the 

token is character-based. Each token is then converted into a vector. We call this token 

embedding. In general, there are two types of token embedding that we used. The first type is a 

classic word embedding type, and the second is a contextual embedding type. 

The first type is pre-trained embedding from Indonesian fastText [18], [19], which 

trained on the Indonesian Wikipedia and Common Crawl [19]. The model is trained with the 

aim that words that have similar semantics can have similar vectors. For example, Jakarta and 

Bandung's words will have a similar vector because they represent the same semantic, namely 

the city. In the fastText model, subwords are also considered to solve out-of-vocabulary 

problems during the pre-training data formation. This word embedding can be called one word, 

one embedding. So that word embedding of this type does not pay attention to context. 

The second type of token embedding in our experiment is contextual embedding. 

Contextual embedding is a token embedding method that can encode semantic information 

relevant to the context of training data. In other words, the representations created by contextual 

embedding can differ depending on the sentence's context. In this study, we used a 

representation of Flair Embedding [20]. Flair embedding is contextual embedding which is 

trained by predicting the next character from a series of characters. This training model is 

proven to encode linguistic concepts such as words, sentences, and even sentiments in the 

context used. Flair Embedding is trained without explicit word feature information. It 

fundamentally models the word as a sequence of characters and is contextualized by the 

surrounding text, which means that the same word will have different embeddings depending on 

contextual usage. However, there are drawbacks to character-based approaches such as Flair 

Embedding. The drawback is that it is difficult to produce meaningful embeddings if there are 

character sets that are rarely used in a context. To overcome this shortcoming, the same 

researchers [21] proposed a method in which each unique character set will be dynamically 

combined. Then a pooling operation is used to filter the global word representation from all 

contextual instances. This method is called Pooled Flair Embedding [21]. 

2.3 Document Embedding  

In contrast to token embedding, Document Embedding creates a single vector 

embedding for the entire text, while token embedding creates a vector embedding for each word 

or character. This is necessary to ensure that each sentence with a different number of words is 

represented identically. This study uses a recurrent neural networks (RNN) technique that trains 

the sequential token embedding pattern [22].  

                                                         
1
 https://github.com/ialfina/id-hatespeech-detection 

2
 https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection 

https://github.com/ialfina/id-hatespeech-detection
https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection
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RNN is a form of neural network architecture in which processing is repeated for 

sequential data input. Because data is processed across multiple layers, RNN falls into the deep 

learning category. In long sequence patterns, the RNN has a problem with gradients which tend 

to have very small values, close to zero. This problem is often called a vanishing gradient. In 

this study, we used the Gated Recurrent Units (GRU). GRU is a variant of RNN and Long Short 

Term Memory. GRU can overcome the vanishing gradient by adding a gate mechanism in the 

RNN architecture [23]. GRU has been proven to overcome long sequence patterns and has a 

more straightforward gate mechanism than LSTM. The advantage of GRU is that the 

computation time is better and has competitive accuracy to avoid the problem of disappearing 

gradients. The two main gates in the GRU is the update gate and reset gate.  

The update gate is used to determine the amount of information from the previous units 

to the next unit. This mechanism can help the model to prevent the vanishing gradient problem. 

The update gate is computed by equation (1). The equation is almost the same as the linear layer 

in the vanilla neural network, which multiplies the weight  with the network unit  in 

timestep t. However, it is added by the weight information  multiply by the network of the 

previous unit . Finally, the result is passed to the sigmoid activation function. 

 

 (1) 

 

The second gate is the reset gate. The reset gate is used to determine how much 

information from the past should be discarded. The reset gate is computed by equation (2). The 

equation is identical to the update gate. However, the usage of each of the outputs will be 

different in the later step. 

 

 (2) 

 

The final step of the GRU is to calculate the current memory content and the final 

memory at the current time step. The reset gate will be used in the current memory content, 

which will calculate how much information to be discarded. The equation to calculate the 

current memory content can be seen in (3).  

 

 (3) 

 

The update gate will be used in the final memory at the current time step to decide what 

information should be passed to the next unit. The equation to obtain the final memory at the 

current time step can seen in (4). 

 

 (4) 

2.4 Output Layer  

The output of the document embedding will be passed to a linear output layer. In this 

study, we did not add an additional hidden layer after the embedding layer. We assume that a 

combination of token embedding and document embedding can provide representations that 

describe semantic patterns and sequential patterns that lead to hate speech. In the output layer, 

we use cross-entropy loss because our classifier is binary. The formula for cross-entropy loss 

can be seen in (5). 

 

 

(5) 
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Where  is cross-entropy, and  shows the class label of hate speech or non-hate speech 

and  is the probability that a sentence is hate speech or not from all sentences in the corpus. 

 

3. RESULTS AND DISCUSSION 

 

In this section, we present the setup of our experiment performance, followed by our 

model's performance. 

3.1 Experimental Setup  

Our experiments were conducted on three different sets of data. Unlike our previous 

work [24], we did not combine the two datasets to provide a benchmark for improving our 

model's performance. The first set of data is from Alfina [16], which contains two labels only, 

hate speech (HS) or not hate speech (NHS). The second and third sets of data are from Ibrohim 

and Budi [17]. For the second dataset, we only took the hate speech label. Thus, we treat the 

second dataset as a binary classification problem. For the third dataset, we took the hate speech 

(HS) and abusive language (AB) columns to benchmark the performance with their original 

paper [17]. As a result, we treat the third dataset as a multi-label classification problem which 

resulted in four possible labels. The last label we haven't introduced is not abusive language 

(NAB). 

We separated the data into training and test sets for each dataset. We allocate 80% of 

the data for training and 20% of the data for testing. The training data will be further divided 

into two parts: training data and validation data, where the validation data plays a role in testing 

the model's performance during training. Table 1 shows the distribution of training data and 

testing data for the first and second data sets, while Table 2 shows the third data sets' 

distribution. 

 

Table 1. Training and Testing for Hate Speech Detection 

Dataset Training Set Testing Set 
HS NHS HS NHS 

Alfina et.al. [16] 204 366 56 87 
Ibrohim and Budi [17] 4.440 6.095 1121 1513 

 

Table 2. Training and Testing for Hate Speech and Abusive Language Detection 

Dataset Training Set Testing Set 
HS NHS  AB NAB HS NHS  AB NAB 

Ibrohim and Budi [17] 4.433 6.102 4.030 6.505 1.128 1.506 1.013 1.621 

 

We conducted our model training on an Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz 

machine with 20 logical central processing unit cores and a GeForce GTX 1080 Ti Graphical 

Processing Unit. The significant difference between the two datasets makes the training times 

much longer for the second datasets. We use the Flair framework for the implementation of our 

model [25]. 

3.2 Experiment Result 

 The experiment aims to determine which embeddings have the best prediction results 

for each dataset. Precision, recall, and F1-Measure are the three key measures we use in our 

experiment. The precision equation can be found on (6), recall on (7), and F1-Measure on (8). 

We show the performance for every class, Hate Speech (HS) and non-Hate Speech (NHS). We 

add two more classes for the third experiment: Abusive Language (AB) and non-Abusive 

Language (NAB). 

  

 

(6) 
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(7) 

 

(8) 

 

We use a variety of embeddings in each experiment. We also stack or combine 

traditional word embedding with contextual embedding. There are seven different types of 

embeddings in total. The first three embeddings use classical word embeddings trained on sub-

word information from fastText. For the first type, we use the fastText pre-trained model on 

Wikipedia (FastText Wiki). In the second model, we use the pre-trained model on Common 

Crawl (FastText crawl). In the third model, we perform stacking between those two embeddings 

(FastText wiki+crawl). 

We use contextual embeddings in the fourth and fifth experiments: Flair embeddings 

and Pooled Flair Embeddings. For both the flair and pooled flair embeddings, we use both 

forward and backward models. The embedding was pre-trained on the JW300 corpus, which 

contained the Bahasa Indonesia language [26]. Lastly, we stack the classical word embedding 

with contextual embeddings to provide a richer representation. We only use the Wikipedia 

model for the classical word embedding, which performed better in our experiment [24]. 

Table 3 shows the performance of our model in the first dataset [16]. We also shows our 

baseline model's performance from Alfina et al. [16], which trained on the random forest 

decision trees with the combination of features. These features are word unigram, word bigram, 

char trigram, char quadragram, and negative sentiment. One of our models achieves better 

performance compared to the baseline. The best model is using FastText representation trained 

on Wikipedia. Overall, the first dataset performed better on the classical word embedding rather 

thank contextual word embedding. The second-best performance is still using the same 

embeddings, stacked with the FastText crawl. Thus, the FastText common crawl gives no 

improvement into the basic FastText Wikipedia.  

 

Table 3. The performance of the classification on the first dataset [16]. We also show the 

performance for the baseline model 

Features and Embeddings 
Precision Recall F1-Measure 

HS NHS avg HS NHS avg HS NHS avg 

Sent+Word+Char+RFDT [16]  89.8 

FastText wiki 92,5 92,2 92,3 87,5 95,4 91,5 89,9 93,8 91,9 

FastText crawl 84,9 87,8 86,3 80,3 90,8 85,6 82,6 89,3 85,9 

FastText wiki+crawl 89,8 87,2 88,5 78,6 94,3 86,6 83,8 90,6 87,2 

Flair  84,6 86,8 85,7 78,6 90,8 84,7 81,5 88,8 85,2 

Pooled Flair  83,0 82,3 82,6 69,6 90,8 80,2 75,7 86,3 81,0 

FastText Wiki + Flair 93,0 84,0 88,5 71,4 96,5 83,9 80,8 89,8 85,3 

FastText Wiki + Pooled Flair 86,1 81,0 83,5 66,1 93,1 79,6 74,8 86,6 80,7 

 

In contrast to the first dataset, the second dataset performs better on contextual word 

embeddings. The last fourth experiment, which uses contextual word embeddings, outperforms 

the classical word embeddings. However, stacking the classical word embeddings (FastText 

Wiki) gave a boost of performance to the Flair Embeddings. The best performance was 

achieved by Pooled Flair Embeddings, which give 87,3 % F1-Measures on average. We cannot 

benchmark the second experiment because the previous research [2] does not perform binary 

classification.  
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Table 4. The performance of the binary classification of  

hate speech label on the second dataset [17] 

Embeddings 
Precision Recall F1-Measure 

HS NHS avg HS NHS avg HS NHS avg 

FastText wiki 83,0 86,1 84,6 80,8 87,8 84,3 81,9 86,9 84,4 

FastText crawl 82,5 82,7 82,6 75,0 88,2 81,6 78,6 85,4 82,0 

FastText wiki+crawl 84,0 88,2 86,1 84,1 88,1 86,1 84,1 88,2 86,2 

Flair  83,9 84,4 84,2 84,4 88,0 86,2 84,2 88,2 86,2 

Pooled Flair  85,8 88,9 87,4 84,9 89,6 87,3 85,3 89,2 87,3 

FastText Wiki + Flair 82,9 90,4 86,7 87,6 86,7 87,2 85,2 88,5 86,9 

FastText Wiki + Pooled Flair 86,6 87,6 87,1 82,8 90,5 86,7 84,6 89,0 86,8 

 

In the third experiment, we conduct multi-label text classification. The classes are either 

hate speech (HS) or non-hate speech (NHS) and abusive (AB), or non-abusive (NAB). Due to 

space limitation, we only show the average of HS and NHS and are denoted µHS. The same 

treatment is for AB and NAB; we only show the average of those two with µAB. Then both 

result gets aggregated to shows the overall average. Based on the experiment, we can show that 

our best model (FastText Wiki + Pooled Flair Embedding) significantly outperformed the 

baseline [17].  

 

Table 5. The performance of multi-label classification on the second dataset [17] 

Embeddings 
Precision Recall F1-Measure 

µHS µAB avg µHS µAB avg µHS µAB avg 

FastText wiki 83,62 89,79 86,70 83,34 89,29 86,32 83,47 89,53 86,50 

FastText crawl 83,53 89,18 86,36 82,66 87,72 85,19 82,98 88,33 85,65 

FastText wiki+crawl 84,99 91,44 88,21 85,08 90,86 87,97 85,03 91,14 88,08 

Flair  85,60 91,16 88,38 85,39 88,70 87,05 85,49 89,62 87,55 

Pooled Flair  85,48 92,39 88,94 86,19 92,68 89,43 85,58 92,53 89,05 

FastText Wiki + Flair 87,13 92,61 89,87 87,19 92,40 89,79 87,16 92,50 89,83 

FastText Wiki + 

Pooled Flair 

86,56 93,11 89,84 87,07 93,56 90,31 86,75 93,33 90,04 

 

 Based on the three experiments we have conducted, contextual embedding has proven 

to be robust in a larger dataset. Flair contextual embedding can capture the linguistic 

information, including subclauses [20] which can be in the form of Indonesian slang language. 

In the multi-label classification task, stacking classical word embedding with contextual 

embedding can give the best result. It consistently followed with the second-best model, which 

also the stack embedding. Stack Embedding able to provide the information about the global 

context of a word provided by fastText trained on Wikipedia, and contextual information was 

given by Flair embedding. 

4. CONCLUSIONS 

In this paper, we build the prediction model for hate speech and abusive language 

prediction focusing on the social media dataset. We demonstrated the usage of the word and 

contextual embedding approach to provide a semantical representation of the tokens. To prove 

the robustness of the embeddings, we did not conduct any pre-processing of the data. In other 

words, the model can still work well without any pre-processing using contextual embedding. 

Thus, we leave this gap for future work. We are also experimenting with stacking one 

embedding with another embedding to provide a richer representation of the sentence. 
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Moreover, we use the document recurrent neural network embedding to capture the sequence 

information from the sentence. Our model proved to improve the dataset provided by Alfina et 

al. [16] and a significant improvement on the larger dataset by Ibrohim and Budi [17]. 

In the future, we suggest using stopwords elimination, slang substitution, stemming, and 

other pre-processing techniques. We believe that several pre-processing methods will boost the 

model's efficiency due to the high noise in social media data. We also recommend testing out 

new transformer models, including Bidirectional Encoder Representations (BERT) and 

Generative Pre-trained Transformers (GPT). 
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