
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.15, No.3, July 2021, pp. 221~232

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: https://doi.org/10.22146/ijccs.66062 221

Received May 24th,2021; Revised July 31th, 2021; Accepted July 31th, 2021

Transliteration of Hiragana and Katakana Handwritten

Characters Using CNN-SVM

Nicolaus Euclides Wahyu Nugroho*
1
, Agus Harjoko

2

1
Master Program of Computer Science, FMIPA UGM, Yogyakarta, Indonesia

2
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia

e-mail: *
1
nicolaus.euclides@mail.ugm.ac.id,

2
aharjoko@ugm.ac.id

Abstrak

Karakter tulisan tangan hiragana dan katakana sering digunakan dalam menuliskan

kata dalam bahasa Jepang. Bahasa Jepang sendiri sering digunakan oleh orang Jepang asli

maupun orang yang belajar bahasa Jepang di seluruh dunia. Karakter hiragana dan katakana

sendiri susah untuk dipelajari karena banyak karakter yang mirip satu dengan yang lainnya.

Pada penelitian ini digunakan karakter tulisan tangan hiragana dan katakana dasar, dakuten,

handakuten, dan youon yang diambil dari responden menggunakan angket. Penelitian ini

digunakan metode CNN yang akan dibandingkan dengan gabungan metode CNN dan SVM

yang telah dirancang untuk mengenali setiap karakter yang telah dipersiapkan. Preproses

gambar karakter menggunakan metode mengubah ukuran gambar, grayscaling, binarisasi,

dilasi,dan erosi. Hasil preproses akan menjadi masukan untuk CNN sebagai alat ekstraksi ciri

dan SVM sebagai alat untuk pengenalan karakter. Hasil dari penelitian ini sendiri didapat

akurasi dengan parameter sebagai berikut ukuran gambar 69×69, nilai patience 3, callbacks

monitor val_loss, fungsi optiimasi Nadam, nilai learning rate 0.001, nilai epochs 30, dan kernel

SVM rbf. jika menggunakan sistem yang hanya menggunakan jaringan CNN akurasi yang

didapat sebesar 87,82%. Hasil yang didapat jika menggunakan gabungan CNN dan SVM

sebesar 88,21%.

Kata kunci— Character-Recognition, SVM, CNN, Deep-Learning, Japanese Character

Recognition

Abstract
Hiragana and katakana handwritten characters are often used when writing words in

Japanese. Japanese itself is often used by native Japanese as well as people learning Japanese

around the world. Hiragana and katakana characters themselves are difficult to learn because

many characters are similar to one another. In this study, hiragana and basic katakana,

dakuten, handakuten, and youon were used, which were taken from the respondents using a

questionnaire. This study used the CNN method which will be compared with a combination of

the CNN and SVM methods which have been designed to identify each character that has been

prepared. Preprocessing of character images uses the methods of image resizing, grayscaling,

binarization, dilation, and erosion. The preprocessed results will be input for CNN as a feature

extraction tool and SVM as a tool for character recognition. The results of this study obtained

accuracy with the following parameters: 69×69 image size, 3 patience value, val_loss monitor

callbacks, Nadam optimization function, 0.001 learning rate value, 30 epochs value, and SVM

rbf kernel. If using a system that only uses the CNN network, the accuracy is 87.82%. The

results obtained when using a combination of CNN and SVM were 88.21%.

Keywords— Character-Recognition, SVM, CNN, Deep-Learning, Japanese Character

Recognition

mailto:1xxxx@xxxx.xxx
mailto:2aharjoko@ugm.ac.id

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 15, No. 3, July 2021 : 221 – 232

222

1. INTRODUCTION

Character recognition is transforming a language represented in a spatial form from a

graphic sign into a symbolic representation [1]. In this research a handwritten character of

hiragana and katakana are used. The handwriting used can be in the form of handwriting on

paper or an object that is digitized using camera or scanner, or online handwriting using a finger

or pointer such as a mouse and stylus. There are three types of japanase character namely

hiragana, katakana, and kanji and each of them have a writing rule. Some people ignore this rule

as long as their writing looks similar to the characters. This makes the Japanese character

written by each person are sometimes different.

 Some studies have been conducted to create a tool that can recognize hiragana and

katakana handwritten characters. Research conducted by Charlie Tsai [2] uses CNN to

recognize hiragana, katakana, dan kanji characters. The data used in the study came from the

Electronical Laboratory (ETL) Character. ETL data used include ETL-1 for katakana letters,

and ETL-8 for hiragana and kanji letters. The result of this study obtainedan accuracy of

99.30% for script recognition, 96.50% for hiragana letter recognition, 98,19% for katakana

letter recognition, 99.6% for kanji letter recognition, and 99.53% for all data recognition.

 Another research conducted by Wang, et al.[3] who compared the VGG19 algorithm,

the CNN algorithm, and the combined CNN-SVM algorithm for charater recognitionof the New

Tai Lue letters. The New Tai Lue character data consists of 83 letters, the whole letter data is

then normalized to one size which is the same 48×48. Character data obtained from the android

applicationwith a total data of 58,795 letters with a total data of 9,834 letters as test data. The

results of this research obtained an accuracy 90.66% for VGG19 algorithm with a computation

time of 346 seconds, 96.41% for CNN algorithm with a computation time of 197 seconds, and

96.89% for a combined CNN-SVM algorithm with a computation time of 206 seconds.

Darmatasia and Fanany [4] conducted research on handwriting recognition on document

entries using the combined CNN and SVM algorithms. The data used were obtained from NIST

SD 19 2nd edition, where 1000 samples of data were randomly selected. The selected data is

then divided 80% as training data and 20% as testing data. Retrieval of data using the filling

form was also carried out on 10 respondents for additional test data. The next step is

preprocessing such as segmentation, cropping, and resizing character data to a size of 28×28

pixels. The results of the preprocess are then used as input to the CNN algorithm as a feature

extraction tool and produce 192 features that will be predicted in the SVM model. Character

prediction testing is done by dividing the data into 4 categories, namely numeric characters,

uppercase characters, lowercase characters, and a combination of numeric and uppercase

characters. The results of this study reveal that the combined use of the CNN and SVM

algorithms in this problem gets better accuracy than when using CNN alone. The best accuracy

results obtained are 98.85% numeric characters, 93.05% uppercase characters, 86.21%

lowercase characters, and a combination of numeric and uppercase characters 91.37%.

Research conducted by Mane and Kulkarni [5] used CNN for Marathi letter recognition.

Modifications were made to the filter section of CNN and the CPU and GPU were used so that

the computation process could be faster. Dehghanian and Ghods [6] conducted research using

CNN for Farsi letter recognition. Two kinds of experiments were carried out, namely using

complete data that had been resized to a size of 28×28 and data with a size of 14×28. The results

for full-sized data obtained an accuracy of 98.83% with a computation time of 32.9 seconds and

error rate 1.07% and for half-sized data obtained an accuracy of 97.38% with a computation

time of 10.16 seconds and error rate 2.62%. So the use of half-sized data makes computing

faster, it's just that by using half-sized data there are still recognition errors for numbers 5 and 8

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Transliteration of Hiragana and Katakana Handwritten... (Nicolaus Euclides Wahyu Nugroho)

223

and numbers 4 and 6.

The recognition of Comenia letters using CNN was carried out by Rajnoha et al. [7].

Handwriting samples of Comenia letters were obtained from elementary school children in

grades 1 and 2, because elementary school children who had just learned to write letters could

not write letters of a similar height so that their recognition would be more difficult. New data

were also generated using the skewing, rotation, horizontal flip and vertical flip methods. The

use of the Keras and Theano frameworks increases the speed of computing using the GPU. The

results obtained were 90.04% for Comenia letter recognition using CNN Deep learning. In the

future it is necessary to add more datasets and image quality.

Another research was conducted by Kim and Xie [8] for the pattern recognition of

Hangul letters using CNN. The dataset used is SERI95a and PE92. The activation function on

CNN is used as follows, the convolutional layer uses the identity function, the max-pooling

layer uses the rectified linear function, the classification layer (hidden layer) uses the rectified

layer, the classification layer (output layer) uses tanh or softmax. Obtained an accuracy of

95.96% for SERI95a data and 92.92% for PE92 data where there was an increase of 2.25% and

5.22%, which in previous studies the accuracy was 93.71% for SERI95a data and 87.70% for

data. PE92.

Suryani et al. [9] conducted a study using a combined CNN and bidirectional long

short-term memory (BLSTM) for handwriting recognition of Chinese characters. Character data

were obtained from the Chinese Academy of Sciences (CASIA) and used HWDB 1.0-1.2 and

HWDB 2.0-2.2. The test data was taken from ICDAR 2013 Handwriting Chinese Character

Recognition, where the authors at CASIA and ICDAR 2013 were not the same. This study has

the advantage that the initialized CNN filter is not used randomly so that its performance is

better. The test used the HWDB 1.1 and ICDAR 2013 dataset. The results obtained 92.00%

accuracy for the HWDB 1.1 data set and 92.20% accuracy for the 2013 ICDAR data set.

Research on the pattern recognition of Japanese hiragana, katakana and kanji characters

using the Deep Convolutional Recurent Network (DCRN) was conducted by Ly et al. [10]. The

model used in this study consists of three layers, namely a convolutional feature extractor CNN

and a sliding window to extract data, a recurrent layer containing the Bidirectional Long Short

Term Memory (BLSTM) algorithm to predict the label of each feature, a transcription layer

containing the CTC algorithm to organize the possible output of the label. The results in the

CNN model that the accuracy rate obtained by the validation set is 97.6% and the testing set is

95.17%. Accuracy measurements are also carried out using their performance, namely Label

Error Rate (LER) and Sequence Error Rate (SER). The measurement is done by reducing

several parts in the model used. The first is a reduction in the softmax (DCRN-s) section, and

secondly by reducing the fully-connected layer and softmax (DCRN-f & s) parts, the third is not

by using DCRN but using the Segmentation Base. The error rate test carried out produced the

following results: DCRN-s, the LER test set value is 6.44% and the SER test set value is

25.89%, the DCRN-f & s test set value is 6.95% LER and the test value The SER set was

28.04%, while for the Segmentation Based the LER test set value was 11.2% and the SER test

set value was 48.63%.

In this study the method proposed combination between CNN and SVM for handwriting

recognition hiragana and katakana characters. A comparison was made between the character

recognition method using CNN and the combined character recognition method of CNN and

SVM. This comparison is made to see which method works better between CNN and combine

CNN and SVM.

2. METHODS

 In this section are explained the data and methods used in this research.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 15, No. 3, July 2021 : 221 – 232

224

2.1 Datasets

The data used in this research is data handwriting hiragana, and katakana. Data were

obtained from respondents using a questionnaire from class XI in the language major of

BOPKRI I Yogyakarta Senior High School for the 2019/2020 school year. The following is an

example of a questionnaire used in this research.

Figure 1 Example of a questionnaire

In Figure 1, it can be seen that the respondent wrote the letters according to the example in the

front column 3 times for each letter.

From the questionnaire that has been collected, the data is processed and cropped using

the GIMP application so that the data per character of the desired letter is obtained. An example

of the data per letter character that has been obtained is shown in Figure 2

Figure 2 Example of cropped data

There are 104 hiragana letter categories and 122 katakana letter categories, where from the

questionnaire that has been collected it is separated again from each letter that has been written

2 letter characters as training data and 1 letter character as test data. So for training data there

are (104 × 23 × 2) + (122 × 23 × 2) = 10,396 letters and from the training data 10% is taken for

validation data, leaving 9,356 letter data for training and 1,040 letter data for validation data.

The test data itself is (104 × 23) + (122 × 23) = 5,198 letters.

2. 2 Preprocessing

 First, we preprocess the data we have been resized, similar to that of Sahariar et al. [11]

but there are some differences. The preprocess includes resizing the image, grayscale the image,

image inversion, image binarization, dilation, and erotion. The read image is then resized as

desired in this case 69 × 69. The next step is to convert the color image into a gray image and

invert it, which is then converted again into a black and white image through the binarization

process. After converting it to black and white image, dilation and erosion are carried out. The

dilation process is carried out to increase the area of the existing object. Furthermore, the

erosion process is carried out to reduce the area of the object. Images that have been processed

through the previous processes are converted into a 69 × 69 × 1 array using the reshape function

in the numpy library. All image data that has been processed are collected in an array called

x_train for training data and x_test for testing data.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Transliteration of Hiragana and Katakana Handwritten... (Nicolaus Euclides Wahyu Nugroho)

225

2. 3 Handwriting Recognition System

 The system design that will be tested in this study uses CNN and SVM for classification

tools. The design will combine the methods drawn from the research literature study conducted

by Wang et al. [3] and Ly et al. [10] so that they can find the optimal design both in terms of

performance and computational consumption. The CNN algorithm itself can be used for

handwriting pattern recognition so that the accuracy of handwritten character recognition will be

compared if the program only runs up to CNN with programs running up to CNN and continues

to SVM so that it combines CNN and SVM. Figure 3 is a plan for a program that runs up to

CNN only.

Start

End

Grayscale
Convertion

Binarization
Resizing
Image

ErotionDilation

Data
Input

Data
Output

CNN

Figure 3 CNN program overview

The steps that will be taken after data collection and scanning the data into a digital

image will be converted from an RGB image to a grayscale image. The next step is to change

the grayscale image to a black and white image. After becoming a black and white image, the

black and white image data will be checked whether the image requires erosion or dilation. This

condition is determined by seeing whether there is a lot of noise in the image. The processed

data will be entered into input data for the CNN architecture. On the CNN network, an

recognition to the character data that has been input is carried out.

 The advanced stage of the program that has been designed in Figure 3 is the addition of

an SVM for character recognition where the results of training and CNN testing that have been

obtained are used as input for SVM. The following is an advanced program design from Figure

3 which has been combined with SVM as shown in Figure 4.

Start

End

Grayscale
Convertion

BinarizationResizing Imge

ErotionDilation

Data
Input

Data
Output

SVM CNN

Figure 4 Combined CNN-SVM program overview

In Figure 4, it can be seen that the initial design is similar to Figure 3 but there is an additional

SVM as a tool for classification and both designs use the same CNN network.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 15, No. 3, July 2021 : 221 – 232

226

2.3.1 Convolutional Neural Network

In this research, the CNN network is used and there are 2 main functions that are carried

out, namely fire_incepter and fire_squeezer. The flowchart of fire_incepter as shown in figure 5.

x = LeakyReLU(alpha=0.15)(x)

x = Conv2D(fire, (5,5),
strides=(2,2))(x)

Start

Input x

left =
LeakyReLU(alpha=0.15)(left)

left = Conv2D(intercept, (3,3),
padding='same')(x)

right =
LeakyReLU(alpha=0.15)(right)

right = Conv2D(intercept, (5,5),
padding='same')(x)

x = MaxPooling2D(strides=2,
pool_size=3)(x)

x = concatenate([left, right],
axis=3)

return x

end

A

A

Figure 5 Fire inceepter flowchart

The input data for this function is the variable x which is then convoluted using a

convolution layer with a size of 5 × 5 and a shift of 2 × 2. The results from this convolution

layer are then inserted into the LeaklyReLu layer with an alpha value of 0.15. Furthermore, the

results from the leaklyReLu layer are processed in two different places where x will be

convoluted on the left and right. The processing on the left uses a convolution layer with a size

of 3 × 3 and which is then stored in the left variable for processing on the LeaklyReLU layer

with an alpha value of 0.15. The processing on the right uses a convolution layer with a size of 5

× 5 and which is then stored in the right variable to be processed on the LeaklyReLU layer with

an alpha value of 0.15. The results of the left and right variables are then combined and inserted

back into the variable x. The result of the combined process is then subjected to MaxPooling

with a shift of 2 and a size of 3.

The fire squeezer function itself is similar to the fire incepter function, except that there

are some changes to its parameters. The input data for this function is the variable x which is

then convoluted using a convolution layer with a size of 16 × 16 and a shift of 1 × 1. The results

from this convolution layer are then inserted into the LeaklyReLu layer with an alpha value of

0.15. Furthermore, the results from the leaklyReLu layer are processed in two different places

where x will be convoluted on the left and right. The processing on the left uses a convolution

layer with a size of 1 × 1 and which is then stored in the left variable for processing on the

LeaklyReLU layer with an alpha value of 0.15. The processing on the right uses a convolution

layer with a size of 3 × 3 and which is then stored in the right variable to be processed on the

LeaklyReLU layer with an alpha value of 0.15. The results of the left and right variables are

then combined and inserted back into the variable x. The result of the combined process is then

subjected to MaxPooling with a shift of 2 and a size of 2.

The two functions are then called on the CNN model created. The flowchart of the CNN

model created can be seen in Figure 6.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Transliteration of Hiragana and Katakana Handwritten... (Nicolaus Euclides Wahyu Nugroho)

227

x = fire_squeezer(x,
fire=64,

intercept=64)

x =
fire_incepter(image

_input, fire=16,
intercept=16)

Start

Input
image_i

nput

x =
LeakyReLU(alpha=0.

1)(x)

x = Conv2D(64,
(2,2))(x)

x = Dropout(0.1)(x)

x =
LeakyReLU(alpha=0.

1)(x)

x = Dense(512)(x)

x = Flatten()(x)

out

endA

A

x = fire_squeezer(x,
fire=64,

intercept=64)

B

B

out =
Dense(len(letter_la

bels),
activation='softmax'

)(x)

Figure 6 CNN model flowchart

Input is in the form of handwritten character image data with a size of 69 × 69, then the

handwritten character data is entered into the fire incepter function which is called on the CNN

network. The output from the fire incepter is inputted to the first fire squeezer function called on

the CNN network. The second fire squeezer function is called with input data in the form of the

output of the first fire squeezer function. The results of the second fire squeezer function are

then processed on a convolution layer with a kernel size of 64 and a shift of 2 × 2. The next

layer receives input from the convolution layer, namely the LeaklyReLU layer with an alpha

value of 0.1. The processed data is then put into the flatten layer and then put into the dense

layer with a unit value of 512.The result is then entered into the LeaklyReLU layer with an

alpha value of 0.1, which is then added to the Dropout layer with a rate of 0.1. The final part of

the CNN is the dense layer with the unit value according to the number of character classes and

the softmax activation function.

2. 4 Support Vector Machine

The next step after using CNN is the use of SVM for handwritten character recognition.

The following is the SVM design flowchart shown in Figure 7.

svm =
SVC(kernel='rbf')

feat_train =
model_feat.predict(

x_train)
Start Input

svm.fit(feat_train,n
p.argmax(y_train,ax

is=1))
end

Figure 7 SVM Flowchart

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 15, No. 3, July 2021 : 221 – 232

228

 Input data for the created SVM program, taken from the dense_1 layer on the CNN

network. The next step is to predict the x_train data. Initialize the SVM kernel which will be

used for character recognition. Then do the fitting to the SVM model that has been made.

3. RESULTS AND DISCUSSION

 This research focuses on the accuracy results of the CNN algorithm with the combined

CNN and SVM algorithms. The test is carried out in two stages. The first stage of testing uses

non-hyper parameter variables to find the image size, patience value, and callback functions,

and the right SVM kernel. The second stage of testing uses the hyper parameter variable to find

the activation function on CNN, the learning rate value, and the correct epochs value.

3. 1 Test Results Using Non Hyper Parameter Variables

 In this section, testing is carried out using non-hyper parameter variables such as image

size (img_size), patience values on CNN networks, callback functions (callbacks_monitor), and

SVM kernel. This is done to obtain a non-hyper parameter variable suitable for testing using the

hyper parameter variable. The hyper parameter variable used in testing this non-hyper parameter

variable uses the Nadam optimization function, with a learning rate of 0.001 and an epochs

value of 30. Table 1 shows the results of CNN network testing using parameters such as image

size, number of patience, and callback functions.

Table 1 CNN Test Results Using Non Hyper Parameter Variables

Img

_size

patience callbacks_

monitor

CNN Training

Accuration (%)

CNN Validation

Accuration (%)

CNN Testing

Accuration (%)

63 3 val_loss 94,88 88,85 86,23

63 3 val_accuracy 95,10 87,98 87,23

63 0 val_loss 88,66 81,92 79,90

63 0 val_accuracy 89,94 84,42 83,69

66 3 val_loss 94,73 85,10 84,63

66 3 val_accuracy 93,07 83,17 82,90

66 0 val_loss 91,92 83,08 82,07

66 0 val_accuracy 91,32 83,65 83,86

69 3 val_loss 96,47 89,23 88,26

69 3 val_accuracy 95,15 87,21 87,25

69 0 val_loss 88,13 81,35 80,15

69 0 val_accuracy 91,29 83,17 82,36

72 3 val_loss 94,59 84,62 85,34

72 3 val_accuracy 95,16 85,00 84,97

72 0 val_loss 93,14 84,71 83,40

72 0 val_accuracy 90,62 81,83 82,34

In table 1, we can see some changes in the non-hyper variable parameters used, such as

image data sizes ranging from 63 × 63, 66 × 66, 69 × 69 and 72 × 72. The next parameter is the

patience value 3 and 0, and then the callback function with the val_accuracy and val_loss

monitor callbacks. The highest results from the use of the CNN network for training data were

96.47%, for validation data were 89.23% and 88.26%. The variables used are img_size 69,

patience 3, and callbacks_monitor val_loss. The next test uses the feature extraction results from

the CNN network that has been made to be included in the SVM model. The results of the SVM

used training data with traits extracted via the CNN network. The following are the results of

the CNN test followed by SVM as a classification tool which is presented in table 2.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Transliteration of Hiragana and Katakana Handwritten... (Nicolaus Euclides Wahyu Nugroho)

229

Table 2 SVM Test Results Using Non Hyper Parameter Variables

The highest results from using the SVM model for training data were 98.46%, for validation

data were 89.71% and 88.76%. The variables used are img_size 69, patience 3,

callbacks_monitor val_loss and the SVM rbf kernel. The rbf kernel itself in SVM has been set

as the default kernel if we use SVM and is a kernel that is often used in the SVM classification.

3.2 Test Results Using Hyper Parameter Variables

 In tables 1 and 2, CNN and CNN testing were carried out followed by SVM so that non

hyper parameter variables were obtained. These variables are img_size with a value of 69,

patience value 3, callbacks_monitor val_loss, and the SVM rbf kernel. Furthermore, the test is

carried out using hyper parameters that have been prepared and to be changed, including the

optimization function on the CNN network, the learning rate value on the CNN network and the

epochs value on the CNN network. Table 3 shows the CNN network testing using fixed non-

hyper parameter variables with the img_size 69 value, the patience value 3, the val_loss

callback function and the hyper parameter variables tested.

Table 3 CNN Test Results Using Hyper Parameter Variables

Optimizer learning_rate epochs
CNN Training

Accuration (%)

CNN Validation

Accuration (%)

CNN Testing

Accuration (%)

Adam 0,01 30 0,61 0,67 0,63

Adam 0,001 30 96,19 87,21 87,03

Adam 0,0001 30 97,76 83,17 83,65

Adamax 0,01 30 92,42 86,15 86,19

Adamax 0,001 30 98,31 85,38 85,44

Adamax 0,0001 30 87,49 74,42 72,76

Nadam 0,01 30 0,48 0,29 0,44

Nadam 0,001 30 97,37 90.00 87,82

Nadam 0,0001 30 95,76 80,29 81,2

Adam 0,01 100 0,44 0,48 0,25

Adam 0,001 100 94,6 87,21 86,42

Adam 0,0001 100 97,49 81,44 81,8

Adamax 0,01 100 90,98 81,92 80,8

Adamax 0,001 100 97,27 85,29 84,71

Adamax 0,0001 100 88,8 73,27 73,8

Nadam 0,01 100 0,59 0,29 0,44

Nadam 0,001 100 95,72 85,58 86,69

Nadam 0,0001 100 97,26 83,37 82,9

Adam 0,01 200 0,86 0,87 1.00

Adam 0,001 200 95,44 87,98 86,28

Adam 0,0001 200 95,88 80,29 79,95

Adamax 0,01 200 93,83 84,71 82,99

Adamax 0,001 200 97,89 81,44 82,32

Adamax 0,0001 200 93,3 76,54 76,53

Nadam 0,01 200 0,49 0,77 0,46

Nadam 0,001 200 95,52 82,69 82,9

Nadam 0,0001 200 95,86 80,48 79,55

Img

_size
patience callbacks_monitor SVM Kernel

SVM Training

Accuration (%)

SVM Validation

Accuration(%)

SVM Testing

Accuration

(%)

69 3 val_loss rbf 98,46 89,71 88,76

69 3 val_loss linear 98,24 89,33 88,63

69 3 val_loss poly (degree 2) 98,16 87,40 86,67

69 3 val_loss poly (degree 3) 97,45 87,12 84,28

69 3 val_loss sigmoid 97,99 89,33 88,38

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 15, No. 3, July 2021 : 221 – 232

230

Table 3 shows the use of variable hyper parameter variables such as the optimization

function using Adam, Nadam, and Adamax. The next variable is the learning rate values of

0.01, 0.001, and 0.0001. Furthermore, changes in the value of epochs with values of 30, 100,

and 200. It can also be seen that changes in hyper parameters on the CNN network itself can

provide quite a difference between one variable and another. The highest result was for the

CNN network with an accuracy of 97.37% for training data, 90.00% for validation data, and

87.82% for testing data. The variables used to obtain these results are the Nadam optimization

function, the learning rate value of 0.001, and the epochs value of 30. Furthermore, testing is

carried out using SVM with the rbf kernel that has been determined from the results of the

previous test for the non-hyper parameter variable which is presented in table 4.

Table 4 CNN Test Results Using Hyper Parameter Variables

Table 4 shows that the highest accuracy obtained is 98.44% for training data, 89.71%

for validation data and 88.21% for testing data. There is a slight difference in the accuracy value

from that obtained when testing with non hyper parameter variables and when testing with

hyper parameter variables. This is because the validation data collection takes 10% of the

training data randomly.

4. CONCLUSIONS

After the research was carried out, the research results were obtained with the following

conclusions:

The experiments that have been carried out are divided into two, the first is an

experiment by changing the non-hyper parameter variables, among others, by changing the

image size with values of 63 × 63, 66 × 66, 69 × 69, and 72 × 72. Changing experiments were

also carried out on the CNN model by changing the patience value of the callback function by 0

or 3, changing the monitor callbacks parameter in the callback function to val_loss or

val_accuracy. In the SVM model the experiment was carried out using the rbf kernel, linear,

poly with degree 2, poly with degree 3, and sigmoid.

The results of testing experiments with non-hyper variable parameters, the greatest

accuracy rate is obtained using image size parameters 69 × 69, with patience value 3, monitor

callbacks val_loss, and SVM kernel using rbf. These parameter parameters then become fixed

parameters to be tested in the test using the hyper parameter variable. The highest accuracy

results obtained were 98.46% for training data, 89.71% for validation data, and 88.76% for

testing data.

Subsequent experiments were carried out by changing the hyper parameter variables

including the optimization function on the CNN network with Adam, Nadam, or Adamax. Other

changes change the value of the learning rate used on the CNN network with a value of 0.01,

0.001, or 0.0001. Furthermore, the epochs value changes to 30, 100, or 200.

The results of testing experiments with hyper parameter variables, the greatest accuracy

rate is obtained using the parameters of the Nadam optimization function, with a learning rate of

0.001, and an epochs value of 30. Parameters parameters The highest accuracy result obtained is

98.44% for training data, 89.71% for validation data and 88.21% for testing data.

Optimize

r

learning

_rate
epochs

SVM

Kernel

SVM

Training

Accuration

(%)

SVM

Validation

Accuration

(%)

SVM

Testing

Accuration

(%)

Nadam 0,01 30 rbf 4,77 3,37 3,14

Nadam 0,001 30 rbf 98,44 89,71 88,21

Nadam 0,0001 30 rbf 99,49 80,19 81,44

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Transliteration of Hiragana and Katakana Handwritten... (Nicolaus Euclides Wahyu Nugroho)

231

The strength of this research is the combination of the CNN algorithm and the SVM

algorithm for handwriting recognition of hiragana and katakana characters. It is also known that

the combined use of the CNN algorithm and the SVM algorithm can run better than the use of

the stand-alone CNN algorithm. Another advantage is that it is known that non hyper parameter

variables and hyper parameter variables are used with high accuracy so that further research can

use these variables. The drawback of this study is the lack of handwritten data on hiragana and

katakana characters in Indonesia, so that the respondents are not taken from native Japanese

people but students who studied Japanese.

The conclusion is using the CNN network structure that has been created, there is an

average difference in the accuracy of 1% -1.5% when training data, validation data, and test data

are used in the CNN algorithm followed by SVM. This difference shows that the combined

algorithm from CNN + SVM can be better than the stand-alone CNN algorithm.

5. SUGGESTION

Suggestions for further research should be added to the training data so that the tools

that have been made can produce higher accuracy. The training data may also be better if taken

from the original author, who is a native Japanese or a person who has lived in Japan for a long

time. The image processing process also needs to be considered so that the characteristic data

obtained is better. Addition or change in the structure of the artificial neural network so that the

characterization is better and the accuracy is higher.

REFERENCES

[1] V. Kumar, “Online Handwriting Recognition Problem : Issues and Techniques,” vol. 4,

no. 1, pp. 16–24, 2014.

[2] Charlie Tsai, “Recognizing Handwritten Japanese Characters Using Deep Convolutional

Neural Networks,” pp. 1–7, 2016.

[3] Y. Wang, P. Yu, and C. Li, “Offline Handwritten New Tai Lue Characters Recognition

Using CNN-SVM,” Proc. 2019 IEEE 2nd Int. Conf. Electron. Inf. Commun. Technol.

ICEICT 2019, pp. 636–639, 2019, doi: 10.1109/ICEICT.2019.8846292.

[4] Darmatasia and M. I. Fanany, “Handwriting recognition on form document using

convolutional neural network and support vector machines (CNN-SVM),” 2017 5th Int.

Conf. Inf. Commun. Technol. ICoIC7 2017, vol. 0, no. c, pp. 1–6, 2017, doi:

10.1109/ICoICT.2017.8074699.

[5] D. T. Mane and U. V Kulkarni, “Visualizing and Understanding Customized

Convolutional Neural Network for Recognition of Handwritten Marathi Numerals,”

Procedia Comput. Sci., vol. 132, no. Iccids, pp. 1123–1137, 2018, doi:

10.1016/j.procs.2018.05.027.

[6] A. Dehghanian and V. Ghods, “Farsi Handwriting Digit Recognition based on

Convolutional Neural Networks,” 2018 6th Int. Symp. Comput. Bus. Intell., vol. 1, pp.

65–68, 2018, doi: 10.1109/ISCBI.2018.00022.

[7] M. Rajnoha, R. Burget, and M. Khisore Dutta, “Handwriting Comenia Script

Recognition with Convolutional Neural Network,” pp. 775–779, 2017.

[8] I.-J. Kim and X. Xie, “Handwritten Hangul recognition using deep convolutional neural

networks,” pp. 1–13, 2015, doi: 10.1007/s10032-014-0229-4.

[9] D. Suryani, P. Doetsch, and H. Ney, “On the Benefits of Convolutional Neural Network

Combinations in Offline Handwriting Recognition,” 2016 15th Int. Conf. Front.

Handwrit. Recognit., pp. 193–198, 2016, doi: 10.1109/ICFHR.2016.0046.

[10] N. T. Ly, C. T. Nguyen, K. C. Nguyen, and M. Nakagawa, “Deep Convolutional

Recurrent Network for Segmentation-Free Offline Handwritten Japanese Text

Recognition,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, vol. 7, pp. 5–9, 2018,

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 15, No. 3, July 2021 : 221 – 232

232

doi: 10.1109/ICDAR.2017.357.

[11] A. Shahariar, A. Rabby, S. Haque, S. Islam, S. Abujar, and S. A. Hossain, “BornoNet :

Bangla Handwritten Characters Recognition Using Convolutional Neural Network

Convolutional Neural Network,” Procedia Comput. Sci., vol. 143, pp. 528–535, 2018,

doi: 10.1016/j.procs.2018.10.426.

