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Abstrak 

Sarkasme merupakan salah satu tantangan yang mempengaruhi hasil dari analisis 

sentimen.  Menurut Maynard dan Greenwood (2014), performa analisis sentimen dapat 

ditingkatkan ketika sarkasme dapat diidentifikasi. Beberapa penelitian menggunakan metode 

Naïve Bayes dan Random Forest pada proses analisis sentimen.  Pada penelitian Salles, dkk 

(2018) dalam beberapa kasus Random Forest dapat mengungguli kinerja dari Support Vector 

Machine yang dikenal lebih superior. Pada penelitian ini dilakukan analisis sentimen pada kolom 

komentar akun Instagram politikus di Indonesia. Penelitian ini membandingkan akurasi dari 

metode analisis sentimen dengan deteksi sarkasme dan tanpa deteksi sarkasme, menggunakan 

metode Naïve Bayes dan Random Forest untuk analisis sentiment lalu Random Forest untuk 

deteksi sarkasme. Penelitian ini menghasilkan nilai akurasi pada analisis sentimen tanpa deteksi 

sarkasme dengan Naïve Bayes sebesar 61%, dengan metode Random Forest sebesar 72%. Hasil 

akurasi pada analisis sentimen dengan deteksi sarkasme menggunakan metode Naïve Bayes – 

Random Forest sebesar 60% dan metode Random Forest – Random Forest sebesar 71%. 

 

Kata kunci— analisis sentimen, deteksi sarkasme, Random Forest, Naïve Bayes 

 

 

Abstract 

 Sarcasm is one of the problem that affect the result of sentiment analysis. According to 

Maynard and Greenwood (2014), performance of sentiment analysis can be improved when 

sarcasm also identified. Some research used Naïve Bayes and Random Forest method on 

sentiment analysis process. On Salles, dkk (2018) research, in some cases Random Forest 

outperform the performance by Support Vector Machine that known as a superior method. In this 

research, we did sentiment analysis on comment section on Instagram account of Indonesian 

politician. This research compare the accuracy of  sentiment analysis with sarcasm detection and 

analysis sentiment without sarcasm detection, sentiment analysis with Naïve Bayes and Random 

Forest method  then Random Forest for sarcasm detection. This research resulted in accuracy 

value in sentiment analysis without sarcasm detection with Naïve Bayes 61%, with Random 

Forest method 72%. Accuracy on sentiment analysis with sarcasm detection using Naïve Bayes – 

Random Forest method is 60% and using Random Forest – Random Forest method is 71%. 

 

Keywords— sentiment analysis, sarcasm detection, Random Forest, Naïve Bayes. 
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1. INTRODUCTION 
 

Analysis from the Public Connection Survey shows that media consumption, along with 

demographic, trust, success and social capital measures, influences public connections and 

political participation (Couldry et al., 2007). Social media is a tool that has a major influence on 

political activities. According to Lopez-Lopez, et al (2014) stated that residents, with roles as 

supporters or consumers, mostly visit the social media of an organization (eg government, 

political parties) to complain (shitstorm phenomenon) or support and good experiences 

(candystorm phenomenon). 

Instagram as one of the largest social media for people to express opinions, share thoughts 

and reports in real-time. There were as many as 62,230,000 active Instagram users in Indonesia 

in January 2020, accounting for 22.7% of the entire population. (NapoleonCat.com, 2020). 

Instagram is also a platform that is often used by Indonesian social media users aged 16 to 64 

years, 23% higher than Twitter (Hootsuite, 2020). The amount of Instagram data increases with 

the height of its popularity. The maximum number of characters in Instagram upload comments 

and captions is 2200 characters, much different from Twitter which can only contain 280 

characters. With very large data and a higher maximum number of characters, it certainly makes 

the text in Instagram comments more complex to analyze. 

Complaints or support on Instagram accounts of politicians who represent the 

government in Indonesia, need to be analyzed to assist in the selection of the next policy. Various 

data mining techniques are applied to understand public opinion. One popular technique for 

analyzing data is sentiment analysis. Opinions on sentiment analysis are classified as positive, 

negative or neutral (Pang and Lee, 2008). In some circumstances sentiment analysis has 

significant drawbacks. One of them when the text contains sarcasm. It is possible that a sarcastic 

text that actually mocks a politician is detected as a positive opinion. The results of the research 

of Antonakaki, et al (2017), 11% of Twitter users who are active in the topic of the United States 

presidential election express opinions in the form of sarcasm. Sarcasm, as a special type of 

communication, where the explicit meaning is different from the implicit meaning, cannot be 

identified effectively with conventional data mining techniques such as sentiment analysis (Yee 

Liau and Pei Tan, 2014). 

Maynard and Greenwood (2014) say that the performance of sentiment analysis can be 

improved when sarcasm can be identified. In a previous study, Yunitasari, et al (2019) detected 

sarcasm using the Random Forest method with 4 features, namely unigram, sentiment-related 

features, punctuation-related features and lexycal and syntactic features. Using these 4 features, 

the accuracy of sentiment analysis increased from 75% to 80%. Alita and Rahman's (2020) 

research succeeded in increasing the accuracy of sentiment analysis by 16.61% by detecting 

sarcasm in tweets about public services. There were 69 sarcasm tweets from 122 tweets with 

positive sentiment predictions about "Jokowi", and 82 sarcasm tweets from 100 tweets with 

positive sentiments about "Ahok". 

In a study by Bouazizi and Otsuki (2016), a comparison was made using 4 classification 

methods on sarcasm detection, the highest accuracy result of 83% was obtained by the Random 

Forest algorithm. In addition, in the research of Salles, et al (2018) in some cases Random Forest 

can outperform the performance of the Support Vector Machine which is known to be superior. 

Based on the research mentioned, there is an algorithm that obtains high accuracy in classification 

with certain datasets. To find out the best method to improve the accuracy of sentiment analysis, 

in this study a comparison of the Machine Learning algorithm on sentiment analysis with sarcasm 

detection was carried out with a modification of the research flow from Yunitasari, et al (2019) 

Therefore, this study uses the Naïve Bayes and Random Forest algorithms with a dataset of 

Instagram comments from Indonesian politician’s accounts. 
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2. METHODS 

 

This study focuses on detecting sarcasm in Instagram comments on politician's posts in 

Indonesia using the Naïve Bayes and Random Forest method. The flow of this research can be 

seen on figure 1. The steps taken are collecting data, labeling data, preprocessing, feature 

extraction, classification of sentiment analysis, evaluation of sentiment classification results, 

classification of sarcasm comments, evaluation of sarcasm classification results, sentiment 

reversal if comments are detected as sarcasm, evaluation after sentiment class reversal. 

Comments were obtained from data scraping using Selenium by taking comments from 

uploaded accounts of politicians such as Puan Maharani, Joko Widodo and the DPR RI. After the 

dataset is collected, the next step is the data labeling process. 

The next stage is data preprocessing. At the data preprocessing stage using several 

methods such as data cleaning, case folding, tokenization, stopword removal, conversion of 

emoticons into strings, slang words into standard words, stemming. The next step, feature 

extraction. The features used in the model are unigram, bi-gram, sentiment-related features, 

punctuation-related features and lexical features. 

The next step is to classify the sentiments of the data using the Naïve Bayes classifier and 

Random Forest classifier methods. The next step is to classify sarcasm from the data using the 

Random Forest method. Furthermore, the data with the label of sarcasm will be changed to a 

negative class. After that process, then each model is evaluated. The evaluation of the model is 

calculated based on the performance value, which contains accuracy, precision, recall, and f1-

score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1 Sentiment analysis with sarcasm detection flowchart 
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2.1 Data Collecting and Labeling  

Collecting data is done using Selenium to retrieve the data from Instagram. Number of 

comments taken as many as 3140 data. The number of classes that have been labeled with 

sentiment, namely 815 negative classes, 521 positive classes, 1804 neutral. The number of classes 

that have been labeled sarcasm class, namely 2528 non-sarcasm class and 612 sarcasm class. The 

results of data collection and labeling can be seen in Table 1. 

 

 

Table 1 Data colection result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The class distribution of the data can be seen on Figure 2. The green bar describe 

number of non sarcasm data and the blue bar describe number of sarcasm data. 

 

 

 
 

Figure 2 Distribution of each class pair 

 

 

2.2 Data Preprocessing 

After the data is labeled, the data preprocessing stage is carried out. Data preprocessing 

is done by converting emoji into strings, deleting unimportant parts of the text, separating 

Coment 

Nggak usah pda ngoceh Mulu, lu nyobain sono 

jadi presiden, mampu nggak..?. 

Siapa org yg membayar hutang negara??? Dan 

sampai kpn hutang negara itu terlunaskan?? 

     

D
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sentences into word parts called tokens (tokenization), changing language slang words into 

standard words, deleting words that often appear and don't have important meaning (stopword 

removal) and changing words into basic words (stemming). The result of data preprocessing can 

be seen on Table 2.  
 

The process of converting Indonesian slang words into standard words is assisted by a 

dictionary from github Louis Owen (https://github.com/louisowen6/NLP_Bahasa_resources/ 

blob/master/combined_slang_words.txt). The process of getting sentiment from the text to 

calculate the sentiment of each word using the InSet Lexicon dictionary which contains 3609 

positive words and 6609 negative words with a range of -5 to +5, from github Fajri Koto 

(https://github.com/fajri91/InSet ). 

  

 

Table 2 Data preprocessing result 
 

Coment 

ngoceh melulu nyobain sono presiden 

orang bayar hutang negara hutang negara lunas 

red heart 

 

 

2.3 Features Extraction 
 

 The next step after preprocessing the data is feature extraction. The features used are TF-

IDF unigram, sentiment-related features, punctuation-related features and lexical features.  
 

 

2.3.1 TF-IDF 
 

 TF-IDF weighting combines term frequency (tf) and inverse document frequency (idf) 

models. The first element, TF counts the occurrence of terms (words) in the document. TF with 

term t, is calculated as follows: 

 

TF(t) =   𝑛𝑡
𝑛𝑑

         (1) 

 

where nt is the number of occurrences of t in the document and nd is the number of terms in the 

document. The second element, IDF calculates the importance of a term. The IDF is calculated 

as follows: 

 

         IDF(t) = 𝑙𝑛 𝑙𝑛 
𝑁

𝑑𝑓𝑖+1     (2) 

 

where N is the number of documents and dfi is the number of documents containing term t. The 

final result of tf-idf is the multiplication of tf and idf. 
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2.3.2 Sentiment-related Features 
 

In the sentiment-related features feature set, there are several features taken, namely the 

sentiment value of the emoji, the sentiment contrast value of the emoji, the word sentiment value 

and the sentiment contrast value of the word. 

 

2.3.3 Punctuation-related Features 
 

 In the set of punctuation-related features, there are several features taken, namely the 

calculation of the number of occurrences of exclamation marks, question marks, periods, 

quotation marks, capital letters in words, the number of repetitions of letters in one word. 

 

2.3.4 Lexical Features 
 

In this feature, the number of repetitions of laughter in the text is counted. 

 

2.4 Splitting Data and Oversampling 
 

The datasets that have gone through the data preprocessing and feature extraction 

processes are then divided into training data and testing data. With a comparison between training 

data and testing data, which is 8:2. 

The data obtained from scraping comments on Instagram is very diverse, so the class of 

the dataset obtained is not balanced. In the process of sentiment analysis, there are more data with 

negative classes than the other two classes. In the sarcasm prediction process, the data with the 

non-sarcasm class is much more than the sarcasm class. In order to overcome the problem of 

unbalanced data, the SMOTE oversampling library is used which duplicates samples from the 

minority class. 

 

2.5 Sentiment Analysis 
 

 Sentiment analysis is a text analysis technique to detect the polarity of a text in a 

document, paragraph, sentence, or clause. Sentiment analysis is often used to detect sentiment in 

social data, measure brand reputation, and understand customers. 

 In this research, conducted sentiment analysis with Naïve Bayes and Random Forest 

classifier.  

 

2.5.1 Naïve Bayes Model 
 

Naïve Bayes is a fast algorithm, high-scale model formation and assessment, can be used 

for binary and multiclass classification, and lightweight for training because it does not need 

complicated optimizations (Oracle, 2021). In Bayes' theorem, the conditional probability or 

probability is expressed as: 

 

𝑃(𝑋) =  
𝑃(𝑋|𝐻)𝑃(𝐻)

𝑃(𝑋)
        (3) 

 

where X is the proof, H is the hypothesis, P(H|X) is the probability that the hypothesis H is true 

for the proof X, P(X|H) is the probability that the proof X is true for the hypothesis H, P(H) is the 

prior probability of the hypothesis H , and P(X) is the prior probability of the proof X.  

 

2.5.2 Random Forest Model 
 

Random Forest is one of the ensemble methods in figure 3, that combines a number of k 

learning models with the aim of creating an improved classification model. The ensemble method  
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tends to be more accurate than the base classifier (Han et al., 2011). Random Forest returns the 

class prediction results based on the majority vote results from the base classifiers (Decision 

Tree). The Random Forest method uses the Bagging algorithm, as follows (Han et al., 2011): 

 

• for i = 1 to k do //create k models 

• create a bootstrap sample, D_i D 

• use D_i and the learning scheme to create a new model, M_i 

• endfor 

 

 
 

Figure 3 Ensemble Method [10]. 

 

2.6 Sarcasm Detection and Changing Sentiment Label 
 

 In this research, sarcasm detection is done with Random Forest algorithm. After label 

from sarcasm detection retrieved, the sentiment label and sarcasm label is being checked. If the 

data is sarcasm and the sentiment is positive or netral, the sentiment is changed to negative 

sentiment. 

 

2.7 Model Evaluation 
 

 The results of the evaluation of the data and their classification can be represented in a 

2x2 matrix called the Confusion Matrix (Table 3). 

 
 

Table 3 Confusion Matrix 
 

Prediction 
Actual 

Positive Negative 

Positif True Positive False Positive 

Negatif False Negative True Negative 

 
 

The accuracy value can be calculated by dividing the number of correct classification 

results by the sum of all data with the equation: 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    (4) 

 

Precision is the level of accuracy between the information requested and the answer given 

by the system. Equation of precision: 

 

    𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (5) 

 

Recall is the success value of the system to retrieve information with the equation: 

 

 

    𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (6) 

 

Then the f1-score shows the performance of precision and recall: 

 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
     (7) 

 

 

 

3. RESULTS AND DISCUSSION 

 

 

3.1 Sentiment Analysis With Random Forest 
 

In this Random Forest model, hyperparameter tuning is performed to determine the 

parameters in order to obtain the best model. The results of the Random Forest parameters 

obtained are 'n_estimators' as much as 1400, 'min_samples_split' as much as 2, 'min_samples_leaf' 

as much as 1, 'max_features' with a value of 'sqrt', 'max_depth' as much as 80, 'bootstrap' with a 

boolean value of False. The time required for training data, predictions on testing and evaluation 

data is 21772.37 seconds. The accuracy of the Random Forest model using the above parameters 

is 72%.  

 

3.2 Sentiment Analysis With Naïve Bayes 
 

 In this Multinomial Naive Bayes model, hyperparameter tuning is performed to determine 

the parameters in order to obtain the best model. The result of the Multinomial Naive Bayes 

parameter obtained is 'alpha' with a value of 0.00001. The time required for training data, 

predictions on testing and evaluation data is 14.48 seconds. The accuracy of the Random Forest 

model using the above parameters is 61%. 

 

3.3 Sarcasm Detection With Random Forest 
 

In this Random Forest model, hyperparameter tuning is performed to determine the 

parameters in order to obtain the best model. The results of the Random Forest parameters 

obtained are 'n_estimators' as much as 1400, 'min_samples_split' as much as 2, 'min_samples_leaf' 

as much as 1, 'max_features' with a value of 'sqrt', 'max_depth' as much as 80, 'bootstrap' with a 

boolean value of False. The time required for training data, predictions on testing and evaluation 

data is 19183.17 seconds. The accuracy of the Random Forest model using the above parameters 

is 83%. 
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3.4 Sentiment Label Changed Results 

The label results from sentiment prediction using Random Forest and Naive Bayes and 

then checking for sarcasm from the text. If the text is predicted to be sarcasm and the sentiment 

is neutral (0) or positive(1), then the sentiment value will be changed to negative (-1). A 

comparison of the evaluation of the Random Forest and Naive Bayes sentiment analysis model 

after the label was changed can be seen in table 4. 

 

Table 4 Comparison of sentiment analysis model 
 

 Random Forest Naive Bayes 

No Sarcasm detection 0.72 0.61 

 With Sarcasm detection 0.71 0.60 

 

 

 

4. CONCLUSION 

 

After all the research steps have been carried out, the following conclusions can be drawn 

is the best accuracy in the sentiment analysis model is obtained using Random Forest with an 

accuracy of 71%. The accuracy of the sarcasm model with Random Forest is 83%.Sentiment 

analysis without sarcasm detection obtained better results in both models, Random Forest and 

Naive Bayes. The result of sentiment analysis accuracy without sarcasm detection is one percent 

higher than sarcasm detection. 
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