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Abstrak 

Penyakit kardiovaskular (CVD) adalah penyebab utama kematian di seluruh dunia. 

Pencegahan primer adalah dengan prediksi awal timbulnya penyakit. Menggunakan data 

laboratorium dari National Health and Nutrition Examination Survey (NHANES) pada jangka 

waktu 2017-2020 (N= 7.974), kami menguji kemampuan algoritma machine learning (ML) 

untuk mengklasifikasikan individu yang berisiko. Model ML dievaluasi berdasarkan kinerja 

klasifikasinya setelah membandingkan empat teknik imputasi, tiga resampling 

ketidakseimbangan, dan tiga teknik pemilihan fitur. 

Karena popularitasnya, kami menggunakan decision tree (DT) sebagai model dasar. 

Integrasi multiple imputation by chained equation (MICE) dan synthetic minority oversampling 

with Tomek link downsampling (SMOTETomek) pada model dasar meningkatkan area under 

the curve-receiver operating characteristics (AUC-ROC) dari 57% menjadi 83%. Menerapkan 

simultaneous perturbation feature selection and ranking (spFSR) mengurangi prediktor fitur 

dari 144 menjadi 30 fitur dan waktu komputasi sebesar 22%. Teknik terbaik diterapkan pada 

enam model ML, menghasilkan Xtreme gradient boosting (XGBoost) mencapai akurasi tertinggi 

sebesar 93% dan AUC-ROC sebesar 89%. 

Keakuratan ML model kami dalam memprediksi CVD mengungguli studi sebelumnya. 

Kami juga menyorot penyebab penting CVD, yang dapat dieksplorasi lebih lanjut untuk efek 

potensialnya pada catatan kesehatan elektronik. 

 

Kata kunci—machine learning, cardiovascular disease, imputation, resampling, feature 

selection 

 

Abstract 

Cardiovascular disease (CVD) is the leading cause of death worldwide. Primary 

prevention is by early prediction of the disease onset. Using laboratory data from the National 

Health and Nutrition Examination Survey (NHANES) in 2017-2020 timeframe (N= 7.974), we 

tested the ability of machine learning (ML) algorithms to classify individuals at risk. The ML 

models were evaluated based on their classification performances after comparing four 

imputation, three imbalance resampling, and three feature selection techniques. 

Due to its popularity, we utilized decision tree (DT) as the baseline. Integration of 

multiple imputation by chained equation (MICE) and synthetic minority oversampling with 

Tomek link down-sampling (SMOTETomek) into the model improved the area under the curve-

receiver operating characteristics (AUC-ROC) from 57% to 83%. Applying simultaneous 
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perturbation feature selection and ranking (spFSR) reduced the feature predictors from 144 to 

30 features and the computational time by 22%. The best techniques were applied to six ML 

models, resulting in Xtreme gradient boosting (XGBoost) achieving the highest accuracy of 

93% and AUC-ROC of 89%. 

The accuracy of our ML model in predicting CVD outperforms those from previous 

studies. We also highlight the important causes of CVD, which might be investigated further for 

potential effects on electronic health records. 
 

Keywords—machine learning, cardiovascular disease, imputation, resampling, feature 

selection 

 

 

1. INTRODUCTION 
 

With an estimated 17.9 million deaths each year, cardiovascular disease (CVD) tops the 

list of causes of death worldwide [1]. The leading causes of this lethal disease, which is widely 

prevalent among people of all ages, include high blood pressure, obesity, high cholesterol, 

family history, smoking, and drinking [2]. The clinical presentation of CVD can range from 

asymptomatic to classic presentations. 

The typical symptoms of CVD include typical anginal chest pain consistent with 

myocardial infarction (MI) and or acute cerebrovascular accident (CVA) presenting with focal 

neurological deficits of sudden onset [3]. This symptom may also be accompanied by nausea, 

vomiting, palpitations, diaphoresis, syncope, or even sudden death [4]. However, it is suggested 

to maintain a high level of suspicion in patients experiencing an acute MI [5]. It is essential to 

be aware of the possibility of variations in how symptoms present, particularly in patients with a 

known history of coronary artery disease (CAD) or MI and those with CVD risk factors [6]. 

Given that CVD is accompanied by various symptoms, rapid and precise identification 

is reasonably tricky for medical specialists. As a result, healthcare businesses are gathering 

enormous amounts of data to help medical experts comprehend the condition and ensure 

effective prevention. However, collecting data requires extensive processing to extract 

information efficiently. As a result, machine learning (ML) has become the most effective 

technique for processing data to advance the healthcare industry [7, 8]. 

Numerous studies have conducted various ML methods to predict CVD. Jaymin et al. 

used the random forest (RF) algorithm, logistic model tree, and J48 tree technique, each focused 

on a distinct technique [9]. The J48 tree method had an accuracy rate of 56.76% among them. 

Archana et al. used four algorithms and got the best in K-nearest neighbors (KNN) with an 

accuracy of 87% [10]. Alim et al. used logistic regression (LR), naïve bayes classifier (NBC), 

support vector machine (SVM), RF, and Gradient Boosting (GB), concluded with RF and 

stratified K-fold model being proposed as the better option of all with final accuracy of 86.12%  

[11]. In order to predict and diagnose cardiac disease, Kannan et al. used four ML algorithms: 

LR, RF, SVM, and Stochastic Gradient Boosting (SGB). Despite using 10-fold cross-validation 

in SVM and SGB models, the LR model performed the best with an 87% accuracy rate [12]. 

Utilizing the University of California Irvine (UCI) dataset with 14 attributes and various ML 

approaches, Atallah et al. achieved the best accuracy of 90% using the hard voting ensemble 

method [13]. Kohli et al. used Backward Elimination, an ML feature, to experiment with a 

dataset on cardiac illness. LR has the highest accuracy among the five algorithms used at 87.1% 

[14]. Abderrahmane et al. created a data processing and monitoring application where Spark 

MLlib and Spark streaming were used for data processing and achieved accuracy rates of 

87.5%, sensitivity rates of 86.66%, and specificity rates of 88.37% [15]. Taking into account the 

works mentioned earlier, our study sought to increase the performance and produce more 

satisfying results in terms of addressing missing data problems, imbalanced data, and important 

features to predict CVD.  
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2. METHODS 

2.1 Dataset 

National Center for Health Statistics (NCHS) developed the National Health and 

Nutrition Examination Survey (NHANES), a program used to evaluate the population's health 

and nutritional status in the United States [16]. Medical professionals perform physical, 

physiological, dental, and other medically related assessments as part of the laboratory testing.  
The NHANES dataset consists of five domains: demographic, dietary, examination, 

laboratory, and questionnaire. This study focuses on information obtained from laboratory test 

results, precisely information on the examination and laboratory domains, using a 2017–2020 

timeframe survey [17]. We obtained 8.544 pre-processed samples to predict CVD with non-

pregnant criteria and age over 20 years. 

 
2.2 Data Preprocessing 

2.2.1 Manual Filtering 

To ensure the data used are relevant to the research being conducted, manual filtering 

was performed to eliminate irrelevant variables to the variable outcome of CVD diagnosis. Only 

683 out of a total of 1.861 variables were deemed relevant to our study. We assessed the 

missing values in the dataset to determine the quality and consistency of the data obtained by 

the ML model. Eliminating variables and samples with above 60% missing values were done as 

extensive missing data tends to reduce a study's statistical power and produce biased estimates 

that lead to incorrect findings [18]. The final manual filtering procedure yielded 144 variables 

and 7.974 samples utilized in the model development process. 

2.2.2 Class Labeling 

Participants were categorized as having CVD (label = 1) if they reported getting any of 

the CVD characteristics defined by the enquiry: “Have you ever been told by a doctor that you 

had congestive heart failure, coronary heart disease, a heart attack, or a stroke?” Participants 

who responded "No" to all four questions were categorized as being exempt from the disease 

(label = 0). Note that these symptoms frequently represent CVD [19]. From a total of 7.974 

samples, 750 individuals were classified as class 1, while 7.224 were classified as class 0. 

2.2.3 Normalization 

Min-max scaling normalization is one of the most widely recognized normalization 

approaches that scale data into specific ranges [20]. For each component, the base estimation of 

that element was transformed into 0, the most extreme value was transformed into 1, and all 

other values were transformed into decimals in the range of 0 and 1. We employed the 

MinMaxScaler function from the ‘scikit-learn’  Python module to transform all the numeric 

values. 

2.3 Model Development 

2.3.1 Missing Value Imputation 
Numerous missing values exist in the 2017-2020 NHANES laboratory dataset, which 

can create biased estimates in many ML methods; hence, an imputation method must be 

utilized. Supplementary Table 1 describes all variables used in this research with their missing 

value percentages. To discover which method of imputation was the most effective, we 

evaluated several techniques: simple imputation using statistical mean values [21], multiple 

imputation by chained equation (MICE) [22], k-nearest neighbor (kNN) imputer [23], and 

missForest imputer [24]. We set mean imputation as a baseline, compared the results from these 

imputation methods in CVD prediction using the DT predictive model, and then brought the 

best imputation method onto the following model development stages. 
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2.3.2 Imbalanced Data Resampling  

Class imbalance occurs when the number of instances in one class is disproportionately 

more significant than that of another class  [25]. In such situations, classifiers tend to favour the 

majority class while ignoring the minority class. Resampling is one of the most critical 

strategies for resolving imbalanced data classification problems [26].  

The 2017-2020 NHANES laboratory dataset exhibits highly imbalanced data, with an 

almost 90:10 ratio between classes 0 and 1 (controls vs cases). To address this issue, we 

compared the performance of the synthetic minority oversampling technique (SMOTE) [27] for 

oversampling method, instance hardness threshold (IHT) [28] for the undersampling method, 

and SMOTE with Tomek link (SMOTETomek) [29] for the combination of oversampling and 

undersampling method. 

2.3.3 Feature Selection 

Feature selection methods evaluate the importance of a feature or group of features 

based on a predetermined metric. The most important benefits of these strategies are: (a) to 

prevent overfitting and improve model performance, (b) to acquire a more precise and more 

comprehensive understanding of the problem, and (c) to create faster and more cost-effective 

prediction models [30]. We included all available features in the dataset for the initial run to 

establish a performance baseline and measure the processing time. In order to optimize the time 

required in ML training, we tried three methods that represent each feature selection widely 

used [31]: mutual information (MI) [32], random forest importance (RFI) [33], and 

simultaneous perturbation feature selection and ranking (spFSR) [34].  

2.4 Machine Learning Predictive Models 

2.4.1 Logistic Regression (LR) 

LR uses a logistic function to presume that the target “y” is a member of the set {0,1} 

member and converts linear probabilities into logit; hence, it is more suited to classification 

problems than regression ones [35]. Consider the binary problem, assuming the positive class is 

marked as 1 and the negative class as 0. Since it returns a probability. LR is widely used in 

numerous practical applications, from data processing in industries, medical sciences, and many 

more. 

2.4.2 Decision Tree (DT) 

DT is a popular ML approach for classification since it resembles human reasoning and 

is simple to comprehend [36]. The purpose of the DT is to summarise a series of decision tree 

rules from a dataset containing features and labels by separating nodes based on certain features 

and displaying the algorithm for these rules using a tree diagram. Considering the latest data, the 

computational complexity of this method is modest [36]. 

2.4.3 Random Forest (RF) 

RF is a form of DT that randomly restricts the features utilized for each split and 

functions by building numerous DTs during training. There is no correlation between each DT 

in an RF; after producing a number of trees, the final decision class is determined by a vote 

when a new sample is received, and each DT in the RF determines which category the sample 

belongs [33]. RF is regarded as one of the most effective algorithms that are insensitive to 

multicollinearity and tolerant of missing values and unbalanced data [33]. 

2.4.4 K-Nearest Neighbor (KNN) 

KNN identifies a new data point in accordance with the majority of votes of its “k” 

neighbours, calculates the distance. The KNN is resource intensive, particularly when the size of 

the feature space is enormous [37]. 
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2.4.5 Multilayer Perceptron (MLP) 

MLP is a feed-forward neural network with numerous interconnected neurons. A 

neuron of one layer comes into contact via weighted connections with the neurons of its 

surrounding layers; however there is no link between the neurons of the same layer [38]. 

2.4.6 Xtreme Gradient Boosting (XGBoost) 

Chen and Guestrin first suggested XGBoost in 2016 [39]. It has been regarded as a 

sophisticated estimator with exceptional classification and regression performance. It offers 

numerous enhancements over conventional gradient-boosting algorithms. Unlike the gradient 

boosting decision tree (GBDT), XGBoost's loss function employs regularization to prevent 

overfitting. As the objective function, XGBoost also employs a second-order Taylor series. 

2.5 Performance Metrics 

We assessed the performance evaluation in terms of the standard performance metrics 

widely used in ML studies, including the area under the receiver operating characteristic (AU-

ROC) curve. Where TP = True Positive; TN = True Negative; FP = False Positive; FN = False 

Negative, the performance metrics are defined below. 

2.5.1 Accuracy 

Accuracy is a performance metric that measures the correctness of test data predictions 

[40]. It provides the proportion of accurate predictions while testing data, as shown in equation 

(1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)                   (1) 

2.5.2 Precision 

As shown in equation (2), it is the proportion of correctly classified positive events 

relative to the total number of positive classifications.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃)                                      (2) 

A model with a low precision score likely produces many false positives. Concerns 

about class distribution are better addressed by this metric, along with recall, F1-score, and 

specificity [41].  

2.5.3 Recall 

It is the number of true positive cases that a model correctly identifies out of the overall 

number of true positive cases that are being examined, as shown in equation (3) [42]. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁)                      (3) 

2.5.4 F1 Score 

It results from the harmonic mean of precision and recall as shown in equation (4):  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)                 (4) 

A high F1 score is achieved by striking a balance between precision and recall. If the F1 

score is low, it may indicate that one of these measures has been enhanced at the expense of the 

other [43]. 

2.5.5 Area under the Receiver Operating Characteristic Curve (AU-ROC Curve) 

A ROC curve is a graph that displays the accuracy of a classification model across a 

range of cutoff values. Plotting the true positive rate (recall) versus the false positive rate 

(1−specificity) yields the resulting curve [44]. More items are labelled positive when the 
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threshold is lowered, which increases both the false positive and true positive rates. Utilizing the 

AU-ROC curve offers an overall performance metric across all conceivable classification 

methods. 

 

 

3. RESULTS AND DISCUSSION 

 

We conducted step-by-step imputation, imbalance resampling, feature selection and 

classification methods into the ML baseline model using DT method. The best result from each 

step also served as a baseline for the next step. The results from each step are explained as 

follows: 

3.1 Missing Value Imputation Result 
In this imputation stage, simple mean imputation was set as a baseline for the DT 

model. All the imputation methods used in this study were compared with the baseline, as 

shown in Table 1. Any resampling and feature selection techniques have not been performed.  

 

Table 1 Predictive Model Performance Comparison from Four Imputation Methods 

Measurement Simple KNN MICE MissForest 

Accuracy 0.84 0.84 0.87 0.85 

Precision 0.21 0.21 0.32 0.22 

Recall 0.24 0.23 0.36 0.25 

F1-Score 0.23 0.22 0.34 0.23 

AU-ROC 0.57 0.57 0.64 0.58 

Average 0.42 0.41 0.51 0.43 

Improvement Base - 2% 21% 2% 

 

The MICE imputation method was superior against the others in all measurements, 

yielding 21% relative improvement against baseline performance; therefore, it will be utilized in 

further model development.  

3.2 Imbalanced Data Resampling Result 

An imbalanced ratio between classes is highly possible to bias the ML predictive model. 

In this particular attempt, we brought evidence that a resampling effort could give a significant 

leap to observed performances. The original dataset has a 10:90 imbalanced ratio between cases 

and controls; thereafter, we employed a more modest 25:75 resampled ratio. We did not apply a 

higher minority class increase than this to avoid excessively biased synthetic data. All available 

features and DT predictive models remain utilized in this experiment. Table 2 exhibits detailed 

results for every resampling method, where the baseline performance was set without applying 

any dataset resample. 

 
Table 2 Predictive Model Performance Comparison of Three Resampling Methods Against 

Those Without Resampling 
Measurement None SMOTE IHT SMOTETomek 

Accuracy 0.87 0.87 0.88 0.88 
Precision 0.32 0.73 0.74 0.74 

Recall 0.36 0.77 0.75 0.78 
F1-Score 0.34 0.75 0.75 0.76 
AU-ROC 0.64 0.84 0.83 0.84 
Average 0.51 0.79 0.79 0.80 

Improvement Base 56% 56% 58% 
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From the results, we observed that resampling remarkably elevates model performance in 

highly imbalanced datasets. Oversampling with SMOTE, downsampling with IHT, and the 

combination of oversampling and downsampling with SMOTETomek indicated similar good 

results in our experiment. However, the latest has a slight improvement over the others.  

3.3 Feature Selection Result 

With the goal of developing an accurate model relying on a limited set of available 

features, i.e. only involving features that have high correlation and impact with desired output 

class, we assessed the feature importance of the ML model for predicting CVD. Out of 144 

features in the dataset, the top 30 most notable features were extracted using several feature 

selection methods, precisely mutual information (MI), random forest importance (RFI), and 

simultaneous perturbation feature selection and ranking (spFSR). We selected the 30 features 

based on cross-validation of the models; since models with fewer features showed significantly 

worse performance (>2% drop in AU-ROC score). Table 3 shows comparison results for the DT 

predictive model using full features against mentioned feature selection methods. Note that this 

development stage used the dataset imputed with MICE and resampled with SMOTETomek. 
 

Table 3 Predictive Model Performance Comparison for Four Feature Selection Methods 

Measurement Full MI RFI spFSR 

Accuracy 0.88 0.83 0.87 0.87 

Precision 0.74 0.65 0.73 0.73 

Recall 0.78 0.68 0.76 0.77 

F1 Score 0.76 0.66 0.74 0.75 

AU-ROC 0.84 0.78 0.83 0.84 

Average 0.80 0.72 0.78 0.79 

Improvement Base - 10% - 2% - 1% 

 

We also measured the time required for end-to-end predictive model training using 

mentioned feature selection methods, as shown in Table 4. 

  

Table 4 Time Required in Model Training for Four Feature Selection Methods 

Measurement Full MI RFI spSFR 

Time in seconds 55  35  32  43 

Improvement Base 27% 36% 22% 

 

Although RFI delivered the most efficient method, we decided to nominate spFSR as 

the preferable feature selection method. We considered the time difference in seconds less 

important than the highest accuracy achieved by spFSR. 

3.4 Machine Learning Predictive Model Result 

 After we found the best method in imputation, resampling, and feature selection, the last 

stage of our model development was experimenting with the integration of MICE imputation, 

SMOTETomek resampling, and spFSR feature selection into six different ML methods. We 

used a stratified 10-fold cross-validation instead of a train-test split to avoid overfitting, as the 

dataset is considerably small. Table 5 lists the test result with various evaluation metrics. 
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Table 5 Machine Learning Performance Comparison using 10-fold Cross Validation for 

Cardiovascular Disease Prediction 

Measurement LR DT RF KNN MLP XGB 

Accuracy 0.78 0.87 0.93 0.83 0.82 0.93 

Precision 0.62 0.73 0.94 0.63 0.69 0.92 

Recall 0.26 0.76 0.76 0.77 0.52 0.80 

F1 Score 0.36 0.74 0.84 0.69 0.59 0.86 

AU-ROC 0.60 0.83 0.87 0.81 0.72 0.89 

Average 0.48 0.79 0.87 0.75 0.67 0.88 

 

Simplistic ML models like LR as expected gained very low performance in recall and 

F1 score, likely because the ratio between classes was still imbalanced and the small shift in 

resampling ratio did not take a significant effect. MLP and KNN showed relatively low scores 

as we only used default parameters and did not further optimize other hyperparameters. Basic 

tree algorithms like DT already have decent overall results. As a collection of DTs, the RF 

algorithm polished it up by achieving the best accuracy and precision among them all. On the 

top end, the ensemble ML model XGBoost successfully attained the highest scores in five out of 

six evaluation metrics and was elected the best predictive model in our experiment.  

3.5 Feature Importance  

 Feature selection with spFSR shrunk down feature space into user desired number, in 

this case 30 best features out of 144 total features in the dataset, almost 20%. Table 6 

summarises the top 5 features with the highest importance value for predicting CVD. The 

complete list of the 30 best features can be observed in Supplementary Table 1. 
 

Table 6 Five Features with Highest Importance Factor 

Feature Description Importance Factor 

LBXVME  Blood Methyl t-Butyl Ether (pg/ml) 0,1023 

LBXVMIK Blood Methyl Isobutyl Ketone (ng/mL) 0,0735 

LBXSF5SI  5,10-Methenyl-tetrahydrofolate (nmol/L) 0,0732 

LBDSCHSI  Cholesterol, total (mmol/L) 0,0731 

LBXMCVSI  Mean cell volume (fL) 0,0730 

  

In this study, blood methyl t-butyl ether (MTBE) came out as the most influential factor 

from NHANES 2017-2020 laboratory data for predicting CVD by a more considerable margin 

than other factors. This was rather surprising since it was almost never mentioned in previous 

CVD studies. However, a recent study by Ren et al. showed for the first time how exposure to 

MTBE and the development of CVD are related [45]. Based on their experiment, MTBE was 

proven to affect the metabolism of glucose and lipids, causing obesity to develop, which is one 

of the widely known risk factors of CVD. Cholesterol unexpectedly only took the fourth 

position, with the importance factor slightly below blood methyl isobutyl ketone (MIBK) and 

5,10-methenyl-tetrahydrofolate (MTH). 

 

 

4. CONCLUSIONS 
 

Our study conducted exhaustive experiments on improving the model development 

process to build a better predictive ML model in predicting CVD. Imputation using MICE gave 

21% improvement over mean imputation, while resampling imbalanced data with 
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SMOTETomek achieved 58% relative improvement compared to data without resampling 

applied. The effort to further optimize model development employing spFSR feature selection 

from 144 features to 30 best features managed to reduce training time by 22% with a 

performance hit of only 1%. In ML model comparison using the combination from previous 

stages, XGBoost outperformed other ML models with 89% AUC-ROC and 93% accuracy, a 

slight win over RF with 88% AUC-ROC while the other four tested ML models cannot achieve 

AUC-ROC more than 79%. The utilization of advanced techniques in our model proved to be 

very effective and showed improved results in classification compared to the previous studies 

[9, 10, 11, 12, 13, 14] that only achieved the highest accuracy of 90% [14]. 

Identification of features which contributed most to the CVD prediction using 

NHANES 2017-2020 laboratory data resulting in blood MTBE as the main factor to the disease, 

while cholesterol in the fourth position below blood MIBK and blood MTH.  
As shown in our analysis, our ML model showed promising results for predicting CVD 

in patients at-risk using only the 2017-2020 laboratory data timeframe. Expanding the 

timeframe for a better understanding of other factors would be suggested in the future. Also 

more timeframe surely provides more samples, giving better conditions in treating the dataset, 

i.e. we can raise the missing value threshold without sacrificing model performance. 
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