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Abstrak 

Gempa bumi menghadirkan risiko yang signifikan terhadap keselamatan manusia dan 

infrastruktur, sehingga menekankan perlunya model prediksi yang tepat untuk meminimalisir dampak 

buruknya. Penelitian ini bertujuan untuk mengatasi tantangan dalam memprediksi waktu terjadinya 

gempa bumi secara akurat dengan memanfaatkan dataset LANL Earthquake, yang terdiri dari sinyal 

seismik model laboratorium yang meniru patahan tektonik. Dalam penelitian ini, kami menggunakan 

model ARIMA dan membandingkannya dengan Linear Regression untuk memprediksi kejadian gempa 

bumi. Temuan kami menunjukkan bahwa model ARIMA (1,1,1) mengungguli model-model lainnya, 

dengan MAE terendah sebesar 0,110628. Validitas model telah dikonfirmasi melalui uji Ljung-Box dan 

Jarque-Bera, yang memverifikasi tidak adanya autokorelasi dan distribusi normal dari residual. 
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Abstract 

Earthquakes present significant risks to both human safety and infrastructure, emphasizing the 

need for precise prediction models to minimize their adverse effects. This study seeks to tackle the 

challenge of accurately forecasting the occurrence time of earthquakes by utilizing the LANL Earthquake 

dataset, which comprises seismic signals from a laboratory model emulating tectonic faults. In this study, 

we employed the ARIMA model and compared it with Linear Regression to predict earthquake 

occurrences. Our findings demonstrate that the ARIMA (1,1,1) model surpasses other models, achieving 

the lowest MAE of 0.110628. The validity of the model's assumptions is confirmed through the Ljung-Box 

and Jarque-Bera tests, which verify the absence of autocorrelation and the normal distribution of 

residuals, respectively. 
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1. INTRODUCTION 

Earth sciences research primarily focuses on forecasting the occurrence and severity of 

earthquakes. Earthquakes are natural events resulting from movement or vibration within the earth's 

layers, and they can occur globally, often caused by tectonic activities such as plate movements or 

volcanic events. Anticipating the timing of earthquakes is crucial due to the potentially devastating 



 

 

impact of these disasters. For instance, the earthquake that struck Turkey and Syria in February 2023, 

resulted in a minimum of 41.232 casualties and estimated material losses of up to US$1 billion [1]. 

In predicting the timing of earthquakes, one of the factors used is information derived from seismic 

signals through time series analysis. Seismic signals are vibrations or waves that travel through the 

Earth's interior due to geological activities like earthquakes, explosions, or magma movements 

within volcanoes. These signals are crucial in seismology for studying the earth's nature and 

structure, as well as for detecting and monitoring seismic activity that may endanger human safety 

and the environment. Various types of seismic signals, such as primary waves (P-waves), secondary 

waves (S-waves), and surface waves, are commonly utilized in seismological research [2].  

Our study comprises several key stages. We begin by working with the Los Alamos National 

Laboratory (LANL) Earthquake dataset, which stems from an experiment conducted on rocks in a 

laboratory earthquake model mirroring the tectonic faults in the earth's layers. This dataset exhibits 

periodic and realistic behavior, signifying irregular earthquake occurrences. Data pre-processing 

involves identifying missing values, addressing data skewness, and organizing the raw data for 

analysis. Exploratory Data Analysis (EDA) is then conducted to visualize and summarize the 

dataset's main characteristics, reveal correlations and outliers, and assess data stationarity, which 

informs the modeling process. Next, feature engineering is undertaken to create new features that 

enhance the predictive power of the models, encompassing segmentation, feature manipulation, and 

feature scaling. 

Moving on to the modeling stage, we employ the AutoRegressive Integrated Moving Average 

(ARIMA) stochastic modeling approach and Linear Regression to the pre-processed and engineered 

dataset to predict the timing of earthquakes. The primary metric used to assess our models' 

performance is the Mean Absolute Error (MAE), which quantifies the average magnitude of errors 

between the predicted and actual values without considering their direction. 

2. METHODS 

The research methodology for predicting earthquakes involves several stages illustrated in Figure 

1. It commences with the acquisition of raw data from the LANL Earthquake dataset, which features 

seismic signals from a laboratory model simulating tectonic faults. This raw data is initially pre-

processed to remove noise, normalize, and partition it into training and testing sets. Cleaning 

involves removing any noise or irrelevant information, normalization ensures the data is scaled 

appropriately, and the data is then split into 80% for training and 20% for testing. The training data 

is then subjected to the Augmented Dickey-Fuller (ADF) test to check for stationarity. 

Following the stationarity check, different ARIMA models are developed to capture the 

underlying patterns in the seismic data. To validate the model's assumptions, the Ljung-Box test is 

applied to verify the absence of autocorrelation in the residuals, and the Jarque-Bera test is used to 

confirm the normality of the residuals. These statistical tests are essential for ensuring the reliability 

of the ARIMA models. The best-performing ARIMA model is chosen as the final model, and its 

performance is assessed on the testing set using the MAE to ensure accurate earthquake predictions. 



 

 

 
Figure 1. Flowchart Diagram of the Research Methodology 

2.1 Dataset 

The dataset utilized in this research was sourced from the Los Alamos National Laboratory 

(LANL) via the Kaggle platform [3]. This extensive dataset comprises a total of 577.060.473 rows. 

It was generated synthetically during an experimental study on rocks conducted by LANL using 

the "classic lab earthquake model," a device designed to replicate the loading and failure cycles of 

a tectonic fault, thereby simulating the processes involved in natural earthquakes [4].  

The laboratory model mimics tectonic faults within the earth's layers and while it represents a 

simplified version of an actual earthquake, it is purported to encompass most of the physical 

characteristics of a real earthquake. The data exhibits periodic, realistic behavior, encompassing 

irregularly occurring earthquakes. The dataset encompasses two primary features: acoustic_data 

and time_to_failure, as depicted in Table 1. For this study, the focus is on predicting the 

time_to_failure feature. 

               Table 1. Features in the Dataset 

No. Feature Data Type Explanation 

1. acoustic_data Integer Seismic signal 

2. time_to_failure Float Time until the occurrence of an earthquake 

2.3 Data Pre-Processing 

To ensure accurate results from the machine learning model, it is essential to conduct data 

preprocessing as a preliminary step. This involves checking for missing values and skewness. 

Upon conducting the missing value check, it was found that there are no missing data in the dataset. 

Additionally, the skewness check revealed a slight right-skewed distribution with a skewness 



 

 

value of 0.82 for the acoustic_data feature. However, this skewness was considered insignificant, 

suggesting a generally balanced data distribution. 

2.3 Exploratory Data Analysis 

In this stage, an exploration of the utilized dataset is conducted. The first step involves visualizing 

the correlation between the two features. It was observed through Figure 2 that there is no apparent 

correlation between the two features, indicating that they possess distinct information and are 

suitable for use within the same machine learning model. 

 
             Figure 2. Correlation Matrix Visualization 

Next, a scatter plot visualization is performed to identify any outliers in the distribution of the 

acoustic_data feature with respect to the time_to_failure feature. Figure 3 illustrates the presence 

of outliers in the acoustic_data feature, particularly as time_to_failure approaches 0, indicating 

increased variability in the distribution. 

          
        Figure 3. Scatter Plot Visualization 

Following this, the Augmented Dickey-Fuller (ADF) Test was performed to assess the stationarity 

of the time series data. The ADF Test utilizes Linear Regression to determine if the data is 



 

 

stationary, with a constant mean and variance over time [5, 6]. The Test yielded a low p-value of 

(8.7221 x 10-7), leading to the rejection of the null hypothesis and indicating that the data is 

stationary. Consequently, no differencing is required for prediction. 

2.4 Feature Engineering 

During this stage, the process involves dividing the dataset into segments, manipulating features 

within the dataset, and applying feature scaling using the Robust Scaler. 

2.4.1 Segmentation 

The EDA process revealed that the dataset contains an extremely large number of rows, 

leading to a highly complex computational process. To address this, the dataset, which 

contains 577.060.473 rows, is divided into 3.847 segments, with each segment consisting of 

15.000 rows. 

2.4.2 Feature Manipulation 

It became evident in the previous stages that only one feature, namely acoustic_data, can be 

used as a predictor. This may lead to suboptimal learning processes for the model, affecting 

its ability to accurately predict the target variable. Therefore, new features are added in this 

stage, including the average, standard deviation, maximum value, and minimum value of the 

acoustic_value feature for each row of the dataset within a specific segment. Additionally, 

the rseismic feature is also added, obtained from the difference between the acoustic_mean 

feature in two adjacent rows. 

2.4.3 Feature Scaling 

The scatter plot shown in Figure 3 indicates an outlier in the train acoustic feature. To address 

this, the Robust Scaler is implemented to eliminate the outliers in this feature. The 

implementation of the Robust Scaler involves calculating the median and quartiles of the 

feature with outliers, subtracting the median from each feature value, and dividing the 

difference by the interquartile range (IQR). The description of features in the dataset after the 

feature engineering process can be seen in Table 2. 

Table 2. Features in the Dataset after Feature Engineering 

No. Feature Data Type Explanation 

1. acoustic_mean Float The mean seismic signal on a specific segment. 

2. acoustic_std Float 
The standard deviation of seismic signal on a specific 

segment. 

3. acoustic_max Float 
The maximum value of the seismic signal on a specific 

segment. 

4. acoustic_min Float 
The minimum value of the seismic signal on a specific 

segment. 



 

 

5. rseismic Float 
The difference in the acoustic mean between two 

consecutive records. 

6. time_to_failure Float The time until the occurrence of an earthquake. 

2.5 Modeling 

 2.5.1 AutoRegressive Integrated Moving Average 

AutoRegressive Integrated Moving Average (ARIMA) is a statistical method used for 

forecasting time series data by examining the relationship between the current value and 

previous values [7]. This model combines regression and moving averages to enhance its 

predictive accuracy [8, 9]. The model's key parameters include the differencing level, 

autoregression, and moving average. Generally, ARIMA predictions with orders (1, 1, 1), 

(4, 1, 1), or (2, 1, 2) closely approximate actual data, as depicted in Figure 4. 

Figure 4. Comparison of 3 ARIMA Models Prediction Results 

2.5.2 Linear Regression 

Linear Regression (LR) is a method for predicting the relationship between a dependent 

variable and one or more independent variables by assuming a linear relationship and 

creating the best-fitting line to represent that relationship. The result is an equation of the 

line that can be used to predict the value of the dependent variable based on the independent 

variables [10, 11]. From the visualization in Figure 5, it is evident that the LR model's 

predictions tend to deviate from the actual data. When the actual data values decrease, the 

LR model's predictions do not decrease proportionally. 



 

 

  
Figure 5. Linear Regression Model Prediction Result 

3. RESULTS AND DISCUSSIONS 

3.1 Validation 

The custom train test split method is a crucial step in the preprocessing and feature engineering 

stages of the dataset. This method involves dividing the dataset into training and validation data 

based on a specified percentage, offering enhanced flexibility compared to regular train test splits. 

The custom train test split is implemented as a function, allowing for easy modification of the 

separation percentage and addressing issues such as class imbalance and overfitting in the dataset 

[12]. 

3.2 Evaluation 

In this study, the Mean Absolute Error (MAE) is employed as the evaluation metric for prediction 

results. MAE measures the average absolute differences between prediction results and actual 

values, representing an effective indicator of model performance [13, 14]. A lower MAE value 

signifies better model performance. The formula used to calculate MAE is as follows: 

  𝑴𝑨𝑬 =  
𝟏

𝒏
𝜮 |𝒚 − �̂�|        (1) 

with 𝑛 representing the quantity of the dataset, 𝑦 denoting the actual values in the dataset, and �̂� 

signifying the predicted outcome. The MAE scores for each model used in the research are 

compared in Table 3. The results demonstrate that the ARIMA (1, 1, 1) model yields the lowest 

MAE score, indicating its superior predictive performance compared to both Linear Regression 

and ARIMA models with different parameters. 

         Table 3. Comparison of the Models' Performance 

Model Mean Absolute Error (MAE) 
ARIMA (1,1,1) 0.110628 
ARIMA (2,1,2) 0.110654 
ARIMA (4,1,1) 0.111187 

Linear Regression 1.895926 



 

 

The ARIMA models effectively capture temporal dependencies and patterns in seismic data, 

outperforming the linear assumptions of Linear Regression, which overlook the inherent time-

dependent structure of the data. These findings emphasize the potential of ARIMA models in time 

series analysis for earthquake forecasting.  

Moreover, the presence of autocorrelation in the prediction results using the best model is 

determined through the Ljung-Box Test, while the Jarque-Bera Test is conducted to assess whether 

the prediction results follow a normal distribution or not [15, 16]. These tests add significant depth 

to the analysis and contribute to the robustness of the findings. Further explanations regarding 

each of these tests are as follows: 

I. Ljung-Box Test 

The Ljung-Box Test is a statistical method used to assess the presence of autocorrelation 

in a dataset by comparing its variance to the expected variance if the data points were 

independent. A positive result from the Ljung-Box Test indicates the presence of 

autocorrelation. In this study, the Ljung-Box Test was conducted on the time_to_failure 

predictions, yielding a p-value of 0.44. This suggests that the null hypothesis is accepted, 

indicating that the predictions are independent and lack autocorrelation. 

II. Jarque-Bera Test 

The Jarque-Bera (JB) Test is employed to test if a sample data distribution follows a 

normal distribution by analyzing skewness, kurtosis, and then comparing them to the 

standard normal distribution. A significant test result implies a departure from normality. 

The JB Test performed on the time_to_failure feature estimates yielded a p-value close to 

0.24, suggesting that the predictions follow a normal distribution. 

4. CONCLUSION 

The research findings suggest that the ARIMA (1,1,1) model is adept at predicting the occurrence 

time of earthquakes, boasting an outstanding MAE score of 0.110628 in comparison to other models, 

including ARIMA with different parameters and Linear Regression. This superiority underscores 

the ARIMA (1,1,1) model's ability to accurately capture the temporal dependencies and patterns 

within seismic data, which Linear Regression is unable to do. The Ljung-Box Test results revealed 

no autocorrelation in the prediction outcomes, ensuring that the residuals are white noise. 

Furthermore, the JB Test results indicated that the distribution of the prediction outcomes follows a 

normal distribution, validating the model assumptions. 

This study demonstrates the effectiveness of the ARIMA model in predicting earthquake 

occurrences using the LANL Earthquake dataset, which replicates realistic seismic activity 

characterized by irregular occurrences. The ARIMA model's capability to handle the periodic and 

irregular nature of the dataset underscores its robustness and applicability to real-world seismic data. 

These findings provide valuable insights for institutions aiming to leverage the ARIMA model for 

earthquake prediction and to strategize preventive measures to mitigate the adverse effects of 

earthquakes on communities and the environment. 



 

 

5. FUTURE WORKS 

The study proposes several methods to enhance research outcomes. Firstly, it suggests creating 

new features from seismic signal information by utilizing the real and imaginary values of Fast 

Fourier Transform on the acoustic_value feature in each segment. Additionally, the study 

recommends implementing the Deep Neural Network (DNN) architecture as a predictive model due 

to its effective capability to learn complex and large-sized feature representations. Finally, the study 

encourages the utilization of Vector Autoregressive (VAR) as a predictive model that can 

simultaneously utilize multiple features as predictors. These methods are expected to contribute to 

improving the overall research outcomes in the field. 
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