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Abstrak

Penelitian ini mengkaji klasifikasi penyakit jantung melalui seleksi fitur terintegrasi dan
metodologi pembelajaran mesin, menggunakan tiga set data yang terdiri dari 4.728 partisipan
dan 11 fitur, dengan 4,27% data yang hilang. Dengan menggunakan pembelajaran mesin, kami
menggunakan XGBoost untuk mencapai akurasi 0,95 untuk satu fitur, sementara Random Forest
(RF) menunjukkan akurasi 0,92 dan 0,99 untuk dua fitur yang tersisa. Dalam membandingkan
11 model klasifikasi, RF dan XGBoost mengklasifikasikan penyakit jantung dengan akurasi 0,97
dan 0,99, masing-masing, menggunakan semua fitur yang tersedia. Penerapan Eliminasi Fitur
dengan Seleksi dan Peringkat Fitur Simultan Perturbation (SpFSR) mengungkapkan bahwa RF
mencapai akurasi 0,99 dengan memilih hanya empat fitur (tingkat kolesterol, usia, pengukuran
elektrokardiografi istirahat, dan denyut jantung maksimum), sementara XGBoost turun menjadi
0,91. Pembuatan model RF dengan empat fitur meningkatkan interpretabilitas tanpa
mengorbankan akurasi. Teknik Pembelajaran Mesin yang Dapat Dijelaskan (XAI), termasuk
Permutation Importance dan analisis SHAP Summary Plot, mengukur dampak fitur pada prediksi
penyakit jantung. Fitur pengukuran elektrokardiografi istirahat memiliki nilai tertinggi (0,40 +
0,01), diitkuti oleh denyut jantung maksimum (0,32 = 0,01), tingkat kolesterol (0,28 + 0,01), dan
usia (0,26 £ 0,005). Hasil ini menekankan pentingnya masing-masing fitur dalam mendiagnosis
penyakit jantung melalui pembelajaran mesin.

Kata kunci— Klasifikasi penyakit jantung, Penggabungan dataset, Pengisian nilai yang hilang,
Pembelajaran mesin, Ekstraksi fitur, Machine Learning yang dapat dijelaskan, XGBoost,
Random Forest.

Abstract
This study delves into heart disease classification through integrated feature selection and
machine learning methodologies, utilizing three datasets comprising 4,728 participants and 11
features, with 4.27% missing data. Employing machine learning, we used XGBoost to achieve
0.95 accuracy for one feature, while Random Forest (RF) demonstrated accuracies of 0.92 and
0.99 for the remaining two features. Comparing 11 classification models, RF and XGBoost
classified heart disease with 0.97 and 0.99 accuracy, respectively, using all available features.
Applying Feature Elimination with Simultaneous Perturbation Feature Selection and Ranking
(SpFSR) revealed that RF attained 0.99 accuracy by selecting only four features (cholesterol
level, age, resting electrocardiographic measurements, and maximum heart rate), while XGBoost
dropped to 0.91. Constructing an RF model with four features enhanced interpretability without
compromising accuracy. Explainable Machine Learning (XAl) techniques, including Permutation
Importance and SHAP Summary Plot analyses, gauged feature impact on heart disease
prediction. The resting electrocardiographic measurements feature held the highest value (0.40
+ 0.01), followed by maximum heart rate (0.32 = 0.01), cholesterol level (0.28 = 0.01), and age
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(0.26 £ 0.005). These results underscore the significance of each feature in diagnosing heart
disease via machine learning.

Keywords— Heart disease classification, Dataset fusion, Imputation, Machine learning, Feature
extraction, Explainable Machine Learning, XGBoost, Random Forest.

1. INTRODUCTION

Noncommunicable diseases (NCDs) account for 75% of deaths worldwide, particularly
prevalent in developing regions like South Asia and Sub-Saharan Africa [1]. NCD prevention
involves managing risk factors for obesity, diabetes, and hypertension while encouraging healthy
lifestyle practices such as physical activity, smoking cessation, balanced nutrition, and
responsible alcohol consumption. According to WHO reports from 2020, Ischemic heart disease
and stroke account for approximately 15% of global mortality and were the two primary causes
of death [1]. Cardiovascular disease (CVD) continues to affect more than 500 million individuals
globally and will account for nearly one-third of global deaths by 2021 [2]. Though CVD
mortality rates have been declining over time, progress has slowed dramatically in low-income
and middle-income nations [2]. Access and affordability remain critical barriers to heart disease
diagnosis and could account for up to 17 million deaths [3]. CVD expenses account for 25-30%
of annual medical costs within an organization [4]. Early diagnosis is critical to mitigating both
physical and financial burdens associated with heart disease; WHO estimates project 23.6 million
CVD deaths globally by 2030 [5].

Machine learning techniques have been employed to predict CVD development.
Numerous studies have explored these techniques; Shorewala et al. provided one such example
[3], which achieved an accuracy rate of approximately 75.1% using a Random Forest (RF),
Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) combined into a stacked
model. Maiga et al.[6] attained approximately 70% accuracy using four algorithms such as RFt,
Naive Bayes, KNN, and Logistic Regression (LR). Waigi et al. [ 7] achieved similar success (70%)
using RF, while Decision Tree (DT) was employed with a 72.77% accuracy rate. Khan and
Mondal [8] utilized various algorithms, such as SVM, Neural Networks (NN), and LR, with
success ranging from 71.82%-72.72% accuracy across different datasets. Maini E. et al. also
applied algorithms with similar results on several datasets. Maini et al. and Kavitha et al. reported
an impressive accuracy of 90.74% using artificial neural networks (ANNs) in the Cleveland Heart
Disease dataset [9,10]. Using the same dataset, Kavitha et al. [10] applied a "Hybrid Model,"
composed of DT and RF models, to achieve approximately 88.70%. Shah, D. et al. used multiple
algorithms such as KNN, reaching 90.79% accuracy, while Bharti R. et al.[12] applied Deep
Learning (DL) directly onto The University of California, Irvine (UCI) datasets, achieving
94.20% precision.

Building upon machine learning's demonstrated efficacy in heart disease prediction, this
study integrates data from diverse sources for comprehensive risk forecasting. Employing feature
selection and machine learning strategies enhances model interpretability, providing insights into
predictions and alleviating financial strain associated with early detection amidst projected
increases in cardiovascular deaths [1]. Utilizing three datasets and advanced imputation methods
like XGBoost and Random Forest (RF), this study predicts heart disease for 4,728 individuals.
The SpFSR feature selection method condenses variables to four key elements—cholesterol, age,
restecg, and thalach—maintaining a remarkable 99% accuracy. Beyond simplifying the model,
this reduction enhances interpretability, providing efficient diagnostic tools. The incorporation of
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explainable machine learning, including summary plots and SHAP values, fortifies trust in the
model's decisions, aligning with ethical considerations.

Contributing significantly, this study introduces SpFSR as a potent tool for variable
reduction without compromising predictive accuracy—a noteworthy departure from conventional
approaches. It accentuates the applicability and interpretability of predictive models, underscoring
the importance of accurate and understandable predictions amidst global cardiovascular health
challenges. Addressing a critical gap, the research explicitly presents diverse methodologies
employed in cardiovascular disease prediction. By drawing on three distinct datasets and
employing advanced imputation methods, it establishes a comprehensive basis for
methodological comparison. Notably, the SpFSR method contributes to methodological diversity
by reducing variables to a minimal set while maintaining a 99% accuracy rate—an innovative
perspective for researchers considering feature selection techniques. This commitment to
methodological transparency, augmented by summary plots and SHAP values, fosters a culture
of rigorous scrutiny and refinement in cardiovascular disease prediction research.

2. METHODS
2.1 Datasets and Data Preprocessing

This study utilized three distinct datasets for forecasting heart disease incidence. The
initial dataset originated from the well-established Heart Disease Data Set [13], the second dataset
was procured from IEEEDataPort [14], and the third dataset was secured from Kaggle, identified
as the Heart Disease Prediction dataset [15]. The combined dataset involved 4,728 individuals
and encompassed 14 characteristics, 13 attribute values, and a target variable. Parameters in the
Heart Disease dataset include age (expressed in years), sex (0 for female and 1 for male), chest
pain (cp) categorized as 0 for typical angina, 1 for atypical angina, 2 for non-anginal pain, and 3
for asymptomatic. Other parameters cover resting blood pressure (treetops), serum cholesterol
level (chol), fasting blood sugar levels (fbs), resting electrocardiographic measurements
(restecg), maximum heart rate achieved during testing (thalch), exercise-induced angina (exang),
ST depression induced by exercise relative to rest (oldpeak), slope of the peak exercise ST
segment (slope), number of major vessels (ca), thalassemia (thal), and target, where 0 indicates
no heart disease, and 1 signals the likelihood of developing heart disease.
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Figure 1 Missing value imputation algorithm using machine learning methods

After our analysis was complete, we employed a range of machine learning algorithms,
including decision trees (DT), support vector machines (SVM), random forests (RF), neural
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networks (NN), naive bayes (NB), KNN classifier, logistic regression (LR), XGBoost, CatBoost,
and LightGBM, to predict and fill in missing values. Following cross-validation, we selected the
model with the highest accuracy for imputation. Using accuracy measures, we assessed the
success of our machine learning model in replacing missing information with artificial imputation.
All these stages can be explained in Figure 1. This comprehensive approach resulted in a complete
dataset, enhancing data quality and enabling more precise and relevant analyses for cardiovascular
disease examination.

2.2 Feature Elimination with Simultaneous Perturbation Feature Selection and Ranking (SpFSR)

Feature selection can help maximize computational resources, reduce data acquisition
and storage costs, ensure compliance with feature constraints, and strengthen model robustness.
Simultaneous Perturbation Feature Selection and Ranking (SpFSR) is an advanced feature
selection and ranking technique in predictive modeling [16]. SpFSR begins with the initial weight
Wy and there is a recursion to find the local minimum W as shown in equation (1).

Wy + 1= W, — a; G (Wy) (1)
where ay, is the order of iteration gain; a, = 0 and G (W) are estimates of the gradient at k.

SpFSR research has proven its worth across multiple domains, from cardiovascular
disease prediction and Autism Spectrum Disorder diagnosis [17, 18] to spinal cord injuries, where
SpFSR feature selection research is essential in predictive modeling [20-22].

2.3 Classification Models

Classification is a crucial aspect of applying machine learning techniques for disease
diagnosis. We provide an overview of operational methods employed by DT, RF, SVM, NN, LR,
NB, KNN, XGBoost, CatBoost, and LightGBM classifiers to classify models that best suit this
task.

DT algorithm creates tree-like structures to represent decision-making processes through
hierarchical rules; this highly interpretable approach is a valuable way of exploring factors
impacting heart disease incidence by splitting datasets according to specific attributes and
building decision trees [19,20]. Let's consider a classification problem with K classes. We aim to
classify an instance with features X = (x1, X3, ..., X,) into one of the K classes. At each node of
the tree, we make a decision based on a feature test f;(X) and its associated threshold as shown
in equation (2):
Node i: (f;(X) <= 6,) 2)

Where Node i represents an internal node in the tree, f;(X) is a feature test on one of the features
(x;) in the dataset, and @; is the threshold associated with the feature test. DT uses entropy to
measure the level of impurity disorder in a set of items. The formula is explained in equation (3):

Entropy(p) = =2 (p; * log2(p:)) 3)
where Entropy(p) is the entropy for a set of items p, and p; is the probability of an item
belonging to class i out of all possible classes.

RF is an ensemble method composed of multiple DTs that collectively reduces overfitting
potential and improves classification accuracy. While individual decision trees tend to be
straightforward to interpret, random forests present additional challenges when simultaneously
dealing with multiple decision trees. Yet, this additional difficulty often improves predictive
performance, making RF highly effective tools for various prediction tasks [20].

SVM is an algorithm created to find an optimal hyperplane for class separation in any dataset,
making it particularly suitable for those featuring defined class boundaries. SVM employs kernel
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functions when mapping data into higher dimensional spaces to differentiate classes further and
help increase differentiation. The formula is shown in equation (4):

H:sign(w™ (x) + b) 4)
where b is the bias term and intercept if the hyerplane equation. Furthermore, employing
structural risk minimization principles rather than empirical risk minimization principles makes
SVM suitable for fitting models onto small datasets [21].

NN is a model that mimics the function and structure of human neurons, similar to how our brain
operates. The formula is explained in equation (5):

Zj :Z(Wl]*al)‘l‘b, a; :f(Zl') (5)
where z; is the input to neuron j in the hidden layer, w;; is the weight connecting neuron i in the
previous layer to neuron j in the hidden layer, a; is the output from neuron i in the previous

layer, b; is the bias of neuron j in the hidden layer, and f is the activation function used such as
sigmoid, ReLu, and so on.

NB is a probabilistic algorithm that excels at handling datasets with categorical attributes based
on Bayes' Theorem. Equation (6) explains how NB works based on Bayes’ Theorem. NB stands
out not only as an efficient and effective classification algorithm but also for its elegant simplicity
and apparent effectiveness, even if its independence assumptions aren't fully fulfilled [22].
P D) % .

X Ing)P(Cl) ©)
where P(c; | X) is the posterior probability of class c¢; given features X, P(X |c;) is the likelihood
of observing features X given class c;, P(c;) is the prior probability of class c;, representing the
likelihood of a random instance belonging to class c; without considering the features. P(X) is
the evidence probability, a normalization constant ensuring that the probabilities sum to 1 over
all classes.

P(ci|X) =

LR is a statistical technique that models relationships between independent and binary target
variables using log odds probability. A logistic function transforms linear possibilities to logit
probabilities, making this technique particularly suitable for classification challenges rather than
regression scenarios [23]. The LR formula is explained in equation (7):

P(Class 11X) = z=by + (by * x1)+ (by * x3) + -+ (b, * x) @)

(1+e2)’
where P(Class 1 | X) is the probability that the instance belongs to Class 1 given the features X,
e is the base of the natural logarithm (approximately 2.7183), and z is the linear combination of
the features and their associated weights: by is the bias term (intercept); by, by, ..., b, are the
coefficients (weights) associated with each input features xq, x5, ..., X,.

KNN: Classification decisions are determined based on which class has majority membership
among its nearest neighbors. If one data point has more neighbors from one class than another, it
will be classified accordingly. Every new input data point is assigned its class with the highest
number of nearest neighbors - representing its closest match from that dataset [24].

XGBoost is an efficient gradient-boosting algorithm rooted in decision trees that performs well
on large or complex datasets, using multiple decision trees to increase classification accuracy.
Gradient Boosting Machine (GBM), however, remains one of the leading artificial intelligence
techniques thanks to its seamless parallel processing capability and superior predictive accuracy
[25]. CatBoost is an efficient gradient-boosting algorithm tailored to categorical datasets that
solve preprocessing issues associated with them, making their analysis much simpler [26].
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LightGBM is an efficient gradient-boosting algorithm based on decision trees that deliver fast
performance for large datasets [27].

2.4 Evaluation

The optimal performance of the machine learning technique with all features was assessed by
comparing the accuracy of each method, using a formula that includes True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). To minimize variability and
optimize computational time, a stratified 10-fold cross-validation method for performance
evaluation was employed and the process was repeated three times. The performance matrix
scores are calculated using accuracy, precision, recall, and F1-score that can be explained in
equation (8), equation (9), equation (10), and equation (11):

p _ TP +TN ®)
COUracy = TP TN + FP + FN

P . . — TP (9)

recision = TPP+ 7P

= 10

Recall TP L FP (10)
Recall x Precision

F1 Score = 2 % (11)

Recall + Precision

2.5 Explainable Machine Learning

Explainable machine learning aims to make machine learning models more transparent
and understandable. It addresses the complexity of models like deep neural networks, providing
insights into decision-making processes [28]. This transparency is crucial for trust-building
between machine learning systems and users and has found applications in healthcare and other
fields [31-34]. Key techniques in explainable machine learning include feature importance scores
and SHapley Additive ExPlanations (SHAP). Feature importance scores help assess variable
importance in models [36], while SHAP offers explanations for predictions by quantifying each
feature's impact [37]. SHAP's versatility extends to various models and applications [38, 39].
Explainable machine learning enhances model interpretability and trust, benefiting multiple
domains.

3. RESULTS AND DISCUSSION

3.1 Missing Value Imputation

We evaluate the percentages of missing values in the dataset's features. For instance, the
"cp" feature has 143 missing data (3,02% of the total), "exang" has 48 missing data (1,02%), and
"slope" has 22 missing data (0,46%). However, "sex", "age", "chol", "trestbps", "oldpeak",
"restecg", "fbs", "thalach", and "target" features have no missing data (0%). The process of
handling missing values is explained in Figure 1.

The most effective model for addressing missing values in the 'cp' variable is XGBoost,
achieving a score of 0.949, closely followed by RF with a score of 0.946. In handling missing
values in the 'exang' variables, both RF and XGBoost demonstrated superior performance, scoring
0.994, with DT (0.986) and LightGBM (0.982) following closely. Regarding imputing missing
values for the 'slope' variable, RF emerged as the top-performing model, scoring 0.922, while
XGBoost followed closely with a score of 0.919. Hence, XGBoost and RF were robust models
for missing values in the 'cp' variable. At the same time, RF excelled in addressing missing values
in the 'slope' and 'exang' variables. The Results Selection of the best model for feature imputation
is shown in Table 1.
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Table 1 Results Selection of the best model for feature imputation
Model Accuracy
CP EXANG SLOPE
CatBoost 0.92 0.98 0.90
Decision Tree 0.93 0.99 0.90
KNN Classifier 0.74 0.88 0.75
LightGBM 0.93 0.98 0.89
Logistic Regression 0.44 0.73 0.57
Neural Network 0.48 0.76 0.63
Naive Bayes 0.41 0.71 0.53
Random Forest 0.95 0.99 0.92
Support Vector Machine 0.48 0.75 0.58
XGBoost 0.95 0.99 0.92

3.2 Feature Elimination and Classification Model Selection4

Table 2 The accuracy values of each model using all available features

Model Accuracy | Precision | Recall | F1 Score
CatBoost 0.98 0.98 0.98 0.98
Decision Tree 0.97 0.98 0.97 0.98
KNN Classifier 0.95 0.96 0.94 0.95
LightGBM 0.97 0.98 0.97 0.97
Logistic Regression 0.76 0.77 0.77 0.77
Naive Bayes 0.71 0.79 0.61 0.69
Neural Network 0.82 0.82 0.84 0.83
Random Forest 0.99 0.99 0.98 0.99
Support Vector Machine  [0.81 0.82 0.82 0.82
XGBoost 0.99 0.99 0.98 0.99

In this study, an analysis was conducted on various classification models used to identify
the risk of heart disease. Initially, the performance of the models was evaluated using all available
features. The results in Table 2 showed that two models, RF and XGBoost, achieved the highest

accuracy, almost 0.99.

Table 3 The accuracy values of the Random Forest models using the feature selection results
from SpFSR using the Random Forest Wrapper

Number of List Feature Accuracy | Precision | Recall [F1 Score
features
2 slope, cp 0.75 0.73 0.82 0.77
3 slope, chol, cp 0.87 0.89 0.86 0.87
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Number of List Feature Accuracy | Precision | Recall [F1 Score
features
4 restecg, chol, thalach, age 0.99 0.99 0.99 0.99
5 cp, restecg, thalach, chol, trestbps 0.99 0.99 0.98 0.99
6 cp, slope, thalach, chol, trestbps, restecg 0.98 0.99 0.97 0.98
7 cp, chol, thalach, slope, trestbps, age, 0.98 0.99 0.98 0.98
restecg

Table 4 The accuracy values of the XGBoost models using the feature selection results from
SpFSR using XGBoost Wrapper

Nt%r;zizsf List Feature Accuracy | Precision | Recall |F1 Score
2 slope, cp 0.75 0.73 0.82 0.77
3 cp, slope, thalach 0.84 0.84 0.84 0.84
4 slope, restecg, cp, chol 0.91 0.91 0.91 0.91
5 slope, cp, restecg, thalach, chol 0.97 0.98 0.96 0.97
6 cp, slope, thalach, chol, trestbps, restecg 0.98 0.99 0.98 0.98
7 g}i)c,l ;z:;{ecg, chol, thalach, trestbps, slope, 0.98 0.99 0.98 0.98

In this study, feature selection using the SpFSR method identified the most critical subset
of features to enhance model performance. The results showed that by selecting only four features
(chol, age, restecg, and thalach), the RF model achieved an accuracy of 0.99 (Table 3), while
XGBoost reached an accuracy of 0.91 (Table 4). This suggests that RF remains the preferred
model after feature reduction. Additionally, this RF model with four features can provide highly
accurate predictions of heart disease risk with straightforward interpretation of results, providing
valuable guidance in developing more efficient diagnostic tools to assess this risk. Furthermore,
findings from this research could prove instrumental in creating more effective diagnostic tools.

Reducing the features to these four variables significantly impacts model interpretability.
Here's how they can be explained: (chol) Blood cholesterol levels provide essential data for
assessing cardiovascular disease risks; (Age) is a significant risk factor; (Restecg) results offer
insights into the heart's condition at rest, and; (ThalaCh) measures the maximum heart rate during
stress testing, offering a key indicator of overall cardiovascular health. Moreover, this RF model
with four features can make highly accurate predictions of heart disease risk with easily
interpretable results.

3.3 Explainable Machine Learning with Permutation Importance and SHAP Summary Plot

Permutation importance is an invaluable tool in feature analysis, quantifying each
feature's importance in accurate predictions by tracking how feature changes impact model
performance. Randomly permuting feature values calculate it and note any significant variance in
model performance - with greater variance indicating increased significance for accurate
predictions. Based on permutation importance results for particular features, Restecg stands out
with its exceptional average permutation significance of 0.4021 and low standard deviation of
0.0087, signaling its significant effect on model performance and vulnerability to random
permutations. Thalach also makes an impactful statement with a permutation importance of
roughly 0.3245, making him sensitive to changes that could impede model performance. Although
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his influence is less profound, Chol still manages to have a meaningful permutation impact of
around 0.2813, significantly altering prediction accuracy. Finally, Age significantly identifies
cardiovascular risks with an average permutation importance value of 0.2577, further validating
the previously selected features. Restecg and Thalach mainly contribute towards increasing the
RF model's ability to detect heart disease risks.

High
restecg . 'M'-
(/]
E
thalach . —w— S
g
chol o-w-————- oo 32
©
&
. . = . aad

- + T T Low
-0.4 -0.2 0.0 0.2 0.4

SHAP value (impact on model output)

Figure 2 SHAP Summary Plot

In Figure 2, the SHAP Summary plot provides insights into feature impacts on
predictions. For 'restecg,’ points scatter on both sides of the zero line, indicating mixed positive
and negative impacts depending on feature values. Lower values (blue) tend to have a negative
impact, while higher values (red) are more positive. 'Thalach' generally has a positive impact,
with most points on the positive side and higher feature values (red) having a more substantial
positive effect. 'Chol' shows positive and negative impacts, with no clear color pattern, suggesting
a complex influence on predictions. 'Age' has a predominantly negative impact, as most points lie
on the negative side, and higher feature values (red) intensify this negative effect.

Extensive research has examined the relationship between restecg, thalach, chol, and age
in the context of heart disease. Lakatta & Levy [40] emphasized the role of arterial and cardiac
aging, especially age's impact on cardiovascular disease. Zaini & Awang [41] listed major heart
disease risk factors, including age, cholesterol (chol) levels, and electrocardiographic results
(restecg). Kostis et al. [42] provided valuable insights into age's connection to cardiovascular
health. Further studies have reinforced these findings. Jacobs et al. [43] found a link between low
blood cholesterol levels and mortality, while Hedayatnia et al. [44] explored dyslipidemia's
impact on cardiovascular disease events. Electrocardiograms and maximum heart rate have also
been identified as crucial predictors of heart disease. Kostis et al. [42] delved into the relationship
between age and heart rate in individuals without cardiovascular diseases. This body of research
comprehensively underscores the significant influence of age, cholesterol, and
electrocardiographic results on heart disease, offering a comprehensive understanding of factors
contributing to cardiovascular well-being.

4. CONCLUSIONS

This study addresses the challenge of missing data in a heart disease dataset with 3.02%,
1.02% and 0.46% missing entries across three dimensions - clinical profile (cp), exang (0.01%)
and slope (0.004%) missing values respectively. Through advanced imputation methods such as
XGBoost's accuracy rates of 0.95 for cp and 0.99 for exang while RF recorded rates of 0.95, 0.99,
and 0.92 - these results highlight their effectiveness at managing missing values while improving
data quality analysis for heart disease risk analysis.

Furthermore, our research comprehensively evaluated various classification models using
the SpFSR feature selection method. Initial findings included RF and XGBoost models with high
accuracies of up to 0.99. Once feature selection was complete, four main features (chol, age,
restecg and thalach) remained central, with RF reaching an accuracy of 0.99 while XGBoost hit
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0.91. This simplified approach to four variables enhanced interpretability without jeopardizing
accuracy. We employed the RF model to identify heart disease using four features - blood
cholesterol ('chol"), age (‘age'), resting electrocardiogram results (restecg) and maximum heart
rate during stress tests (thalach). Our findings provide more efficient diagnostic tools, providing
accurate yet understandable models to predict cardiovascular disease more quickly and reliably.
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