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Abstrak 

Penelitian ini mengkaji klasifikasi penyakit jantung melalui seleksi fitur terintegrasi dan 

metodologi pembelajaran mesin, menggunakan tiga set data yang terdiri dari 4.728 partisipan 

dan 11 fitur, dengan 4,27% data yang hilang. Dengan menggunakan pembelajaran mesin, kami 

menggunakan XGBoost untuk mencapai akurasi 0,95 untuk satu fitur, sementara Random Forest 

(RF) menunjukkan akurasi 0,92 dan 0,99 untuk dua fitur yang tersisa. Dalam membandingkan 

11 model klasifikasi, RF dan XGBoost mengklasifikasikan penyakit jantung dengan akurasi 0,97 

dan 0,99, masing-masing, menggunakan semua fitur yang tersedia. Penerapan Eliminasi Fitur 

dengan Seleksi dan Peringkat Fitur Simultan Perturbation (SpFSR) mengungkapkan bahwa RF 

mencapai akurasi 0,99 dengan memilih hanya empat fitur (tingkat kolesterol, usia, pengukuran 

elektrokardiografi istirahat, dan denyut jantung maksimum), sementara XGBoost turun menjadi 

0,91. Pembuatan model RF dengan empat fitur meningkatkan interpretabilitas tanpa 

mengorbankan akurasi. Teknik Pembelajaran Mesin yang Dapat Dijelaskan (XAI), termasuk 

Permutation Importance dan analisis SHAP Summary Plot, mengukur dampak fitur pada prediksi 

penyakit jantung. Fitur pengukuran elektrokardiografi istirahat memiliki nilai tertinggi (0,40 ± 

0,01), diikuti oleh denyut jantung maksimum (0,32 ± 0,01), tingkat kolesterol (0,28 ± 0,01), dan 

usia (0,26 ± 0,005). Hasil ini menekankan pentingnya masing-masing fitur dalam mendiagnosis 

penyakit jantung melalui pembelajaran mesin. 

 

Kata kunci— Klasifikasi penyakit jantung, Penggabungan dataset, Pengisian nilai yang hilang, 

Pembelajaran mesin, Ekstraksi fitur, Machine Learning yang dapat dijelaskan, XGBoost, 

Random Forest. 

 

Abstract 

This study delves into heart disease classification through integrated feature selection and 

machine learning methodologies, utilizing three datasets comprising 4,728 participants and 11 

features, with 4.27% missing data. Employing machine learning, we used XGBoost to achieve 

0.95 accuracy for one feature, while Random Forest (RF) demonstrated accuracies of 0.92 and 

0.99 for the remaining two features. Comparing 11 classification models, RF and XGBoost 

classified heart disease with 0.97 and 0.99 accuracy, respectively, using all available features. 

Applying Feature Elimination with Simultaneous Perturbation Feature Selection and Ranking 

(SpFSR) revealed that RF attained 0.99 accuracy by selecting only four features (cholesterol 

level, age, resting electrocardiographic measurements, and maximum heart rate), while XGBoost 

dropped to 0.91. Constructing an RF model with four features enhanced interpretability without 

compromising accuracy. Explainable Machine Learning (XAI) techniques, including Permutation 

Importance and SHAP Summary Plot analyses, gauged feature impact on heart disease 

prediction. The resting electrocardiographic measurements feature held the highest value (0.40 

± 0.01), followed by maximum heart rate (0.32 ± 0.01), cholesterol level (0.28 ± 0.01), and age 
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(0.26 ± 0.005). These results underscore the significance of each feature in diagnosing heart 

disease via machine learning.  

Keywords— Heart disease classification, Dataset fusion, Imputation, Machine learning, Feature 

extraction, Explainable Machine Learning, XGBoost, Random Forest. 

 

 

1. INTRODUCTION 

 

Noncommunicable diseases (NCDs) account for 75% of deaths worldwide, particularly 

prevalent in developing regions like South Asia and Sub-Saharan Africa [1]. NCD prevention 

involves managing risk factors for obesity, diabetes, and hypertension while encouraging healthy 

lifestyle practices such as physical activity, smoking cessation, balanced nutrition, and 

responsible alcohol consumption. According to WHO reports from 2020, Ischemic heart disease 

and stroke account for approximately 15% of global mortality and were the two primary causes 

of death [1]. Cardiovascular disease (CVD) continues to affect more than 500 million individuals 

globally and will account for nearly one-third of global deaths by 2021 [2]. Though CVD 

mortality rates have been declining over time, progress has slowed dramatically in low-income 

and middle-income nations [2]. Access and affordability remain critical barriers to heart disease 

diagnosis and could account for up to 17 million deaths [3]. CVD expenses account for 25-30% 

of annual medical costs within an organization [4]. Early diagnosis is critical to mitigating both 

physical and financial burdens associated with heart disease; WHO estimates project 23.6 million 

CVD deaths globally by 2030 [5]. 

Machine learning techniques have been employed to predict CVD development. 

Numerous studies have explored these techniques; Shorewala et al. provided one such example 

[3], which achieved an accuracy rate of approximately 75.1% using a Random Forest (RF), 

Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) combined into a stacked 

model. Maiga et al.[6] attained approximately 70% accuracy using four algorithms such as RFt, 

Naive Bayes, KNN, and Logistic Regression (LR). Waigi et al. [7] achieved similar success (70%) 

using RF, while Decision Tree (DT) was employed with a 72.77% accuracy rate. Khan and 

Mondal [8] utilized various algorithms, such as SVM, Neural Networks (NN), and LR, with 

success ranging from 71.82%-72.72% accuracy across different datasets. Maini E. et al. also 

applied algorithms with similar results on several datasets. Maini et al. and Kavitha et al. reported 

an impressive accuracy of 90.74% using artificial neural networks (ANNs) in the Cleveland Heart 

Disease dataset [9,10]. Using the same dataset, Kavitha et al. [10] applied a "Hybrid Model," 

composed of DT and RF models, to achieve approximately 88.70%. Shah, D. et al. used multiple 

algorithms such as KNN, reaching 90.79% accuracy, while Bharti R. et al.[12] applied Deep 

Learning (DL) directly onto The University of California, Irvine (UCI) datasets, achieving 

94.20% precision. 

Building upon machine learning's demonstrated efficacy in heart disease prediction, this 

study integrates data from diverse sources for comprehensive risk forecasting. Employing feature 

selection and machine learning strategies enhances model interpretability, providing insights into 

predictions and alleviating financial strain associated with early detection amidst projected 

increases in cardiovascular deaths [1]. Utilizing three datasets and advanced imputation methods 

like XGBoost and Random Forest (RF), this study predicts heart disease for 4,728 individuals. 

The SpFSR feature selection method condenses variables to four key elements—cholesterol, age, 

restecg, and thalach—maintaining a remarkable 99% accuracy. Beyond simplifying the model, 

this reduction enhances interpretability, providing efficient diagnostic tools. The incorporation of 
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explainable machine learning, including summary plots and SHAP values, fortifies trust in the 

model's decisions, aligning with ethical considerations.  

Contributing significantly, this study introduces SpFSR as a potent tool for variable 

reduction without compromising predictive accuracy—a noteworthy departure from conventional 

approaches. It accentuates the applicability and interpretability of predictive models, underscoring 

the importance of accurate and understandable predictions amidst global cardiovascular health 

challenges. Addressing a critical gap, the research explicitly presents diverse methodologies 

employed in cardiovascular disease prediction. By drawing on three distinct datasets and 

employing advanced imputation methods, it establishes a comprehensive basis for 

methodological comparison. Notably, the SpFSR method contributes to methodological diversity 

by reducing variables to a minimal set while maintaining a 99% accuracy rate—an innovative 

perspective for researchers considering feature selection techniques. This commitment to 

methodological transparency, augmented by summary plots and SHAP values, fosters a culture 

of rigorous scrutiny and refinement in cardiovascular disease prediction research. 

2. METHODS 

2.1 Datasets and Data Preprocessing 

This study utilized three distinct datasets for forecasting heart disease incidence. The 

initial dataset originated from the well-established Heart Disease Data Set [13], the second dataset 

was procured from IEEEDataPort [14], and the third dataset was secured from Kaggle, identified 

as the Heart Disease Prediction dataset [15]. The combined dataset involved 4,728 individuals 

and encompassed 14 characteristics, 13 attribute values, and a target variable. Parameters in the 

Heart Disease dataset include age (expressed in years), sex (0 for female and 1 for male), chest 

pain (cp) categorized as 0 for typical angina, 1 for atypical angina, 2 for non-anginal pain, and 3 

for asymptomatic. Other parameters cover resting blood pressure (treetops), serum cholesterol 

level (chol), fasting blood sugar levels (fbs), resting electrocardiographic measurements 

(restecg), maximum heart rate achieved during testing (thalch), exercise-induced angina (exang), 

ST depression induced by exercise relative to rest (oldpeak), slope of the peak exercise ST 

segment (slope), number of major vessels (ca), thalassemia (thal), and target, where 0 indicates 

no heart disease, and 1 signals the likelihood of developing heart disease. 

 

Figure 1 Missing value imputation algorithm using machine learning methods 

After our analysis was complete, we employed a range of machine learning algorithms, 

including decision trees (DT), support vector machines (SVM), random forests (RF), neural 
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networks (NN), naive bayes (NB), KNN classifier, logistic regression (LR), XGBoost, CatBoost, 

and LightGBM, to predict and fill in missing values. Following cross-validation, we selected the 

model with the highest accuracy for imputation. Using accuracy measures, we assessed the 

success of our machine learning model in replacing missing information with artificial imputation. 

All these stages can be explained in Figure 1. This comprehensive approach resulted in a complete 

dataset, enhancing data quality and enabling more precise and relevant analyses for cardiovascular 

disease examination. 

2.2 Feature Elimination with Simultaneous Perturbation Feature Selection and Ranking (SpFSR)  

Feature selection can help maximize computational resources, reduce data acquisition 

and storage costs, ensure compliance with feature constraints, and strengthen model robustness. 

Simultaneous Perturbation Feature Selection and Ranking (SpFSR) is an advanced feature 

selection and ranking technique in predictive modeling [16]. SpFSR begins with the initial weight 

𝑤0 and there is a recursion to find the local minimum 𝑤̂ as shown in equation (1). 

𝑤̂𝑘 + 1 ≔ 𝑤̂𝑘 − 𝑎𝑘𝐺̂(𝑤̂𝑘) (1) 

where 𝑎𝑘 is the order of iteration gain; 𝑎𝑘 ≥ 0 and 𝐺̂(𝑤̂𝑘) are estimates of the gradient at k. 

SpFSR research has proven its worth across multiple domains, from cardiovascular 

disease prediction and Autism Spectrum Disorder diagnosis [17, 18] to spinal cord injuries, where 

SpFSR feature selection research is essential in predictive modeling [20-22].  

2.3 Classification Models  

Classification is a crucial aspect of applying machine learning techniques for disease 

diagnosis. We provide an overview of operational methods employed by DT, RF, SVM, NN, LR, 

NB, KNN, XGBoost, CatBoost, and LightGBM classifiers to classify models that best suit this 

task. 

DT algorithm creates tree-like structures to represent decision-making processes through 

hierarchical rules; this highly interpretable approach is a valuable way of exploring factors 

impacting heart disease incidence by splitting datasets according to specific attributes and 

building decision trees [19,20]. Let's consider a classification problem with 𝑲 classes. We aim to 

classify an instance with features 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) into one of the 𝑲 classes. At each node of 

the tree, we make a decision based on a feature test 𝒇𝒊(𝑿) and its associated threshold as shown 

in equation (2): 

𝑁𝑜𝑑𝑒 𝑖: (𝑓𝑖(𝑋) <= 𝜃𝑖) (2) 

Where 𝑵𝒐𝒅𝒆 𝒊 represents an internal node in the tree, 𝒇𝒊(𝑿) is a feature test on one of the features 

(𝒙𝒊) in the dataset, and 𝜽𝒊 is the threshold associated with the feature test. DT uses entropy to 

measure the level of impurity disorder in a set of items. The formula is explained in equation (3):  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝) = −𝛴 (𝑝𝑖 ∗  𝑙𝑜𝑔2(𝑝𝑖)) (3) 

where 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝) is the entropy for a set of items 𝑝, and 𝑝𝑖 is the probability of an item 

belonging to class i out of all possible classes. 

RF is an ensemble method composed of multiple DTs that collectively reduces overfitting 

potential and improves classification accuracy. While individual decision trees tend to be 

straightforward to interpret, random forests present additional challenges when simultaneously 

dealing with multiple decision trees. Yet, this additional difficulty often improves predictive 

performance, making RF highly effective tools for various prediction tasks [20]. 

SVM is an algorithm created to find an optimal hyperplane for class separation in any dataset, 

making it particularly suitable for those featuring defined class boundaries. SVM employs kernel 
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functions when mapping data into higher dimensional spaces to differentiate classes further and 

help increase differentiation. The formula is shown in equation (4): 

𝐻: 𝑠𝑖𝑔𝑛(𝒘𝑻(𝒙) + 𝑏) (4) 

where 𝑏 is the bias term and intercept if the hyerplane equation. Furthermore, employing 

structural risk minimization principles rather than empirical risk minimization principles makes 

SVM suitable for fitting models onto small datasets [21]. 
 

NN is a model that mimics the function and structure of human neurons, similar to how our brain 

operates. The formula is explained in equation (5): 

𝑧𝑗 = ∑(𝑤𝑖𝑗 ∗ 𝑎𝑖) + 𝑏𝑗 ;    𝑎𝑖 = 𝑓(𝑧𝑖) (5) 

where 𝑧𝑗  is the input to neuron 𝑗 in the hidden layer, 𝑤𝑖𝑗 is the weight connecting neuron 𝑖 in the 

previous layer to neuron 𝑗 in the hidden layer, 𝑎𝑖 is the output from neuron 𝑖 in the previous 

layer, 𝑏𝑖 is the bias of neuron 𝑗 in the hidden layer, and 𝑓 is the activation function used such as 

sigmoid, ReLu, and so on. 

NB is a probabilistic algorithm that excels at handling datasets with categorical attributes based 

on Bayes' Theorem. Equation (6) explains how NB works based on Bayes’ Theorem. NB stands 

out not only as an efficient and effective classification algorithm but also for its elegant simplicity 

and apparent effectiveness, even if its independence assumptions aren't fully fulfilled [22]. 

𝑃(𝑐𝑖|𝑋) =
𝑃(𝑋|𝑐𝑖) ∗ 𝑃(𝑐𝑖)

𝑃(𝑋)
 (6) 

where 𝑃(𝑐𝑖  | 𝑋) is the posterior probability of class 𝑐𝑖 given features 𝑋, 𝑃(𝑋 |𝑐𝑖) is the likelihood 

of observing features 𝑋 given class 𝑐𝑖, 𝑃(𝑐𝑖) is the prior probability of class 𝑐𝑖, representing the 

likelihood of a random instance belonging to class 𝑐𝑖 without considering the features. 𝑃(𝑋) is 

the evidence probability, a normalization constant ensuring that the probabilities sum to 1 over 

all classes. 

LR is a statistical technique that models relationships between independent and binary target 

variables using log odds probability. A logistic function transforms linear possibilities to logit 

probabilities, making this technique particularly suitable for classification challenges rather than 

regression scenarios [23]. The LR formula is explained in equation (7): 

𝑃(𝐶𝑙𝑎𝑠𝑠 1|𝑋) =
1

(1 + 𝑒−𝑧)
; 𝑧 = 𝑏0  + (𝑏1  ∗  𝑥1) +  (𝑏2  ∗  𝑥2) + ⋯ +  (𝑏𝑛  ∗  𝑥𝑛) (7) 

where 𝑃(𝐶𝑙𝑎𝑠𝑠 1 | 𝑋) is the probability that the instance belongs to Class 1 given the features 𝑋, 

𝑒 is the base of the natural logarithm (approximately 2.7183), and z is the linear combination of 

the features and their associated weights: 𝑏0 is the bias term (intercept); 𝑏1, 𝑏2, … , 𝑏𝑛 are the 

coefficients (weights) associated with each input features 𝑥1, 𝑥2, … , 𝑥𝑛. 

KNN: Classification decisions are determined based on which class has majority membership 

among its nearest neighbors. If one data point has more neighbors from one class than another, it 

will be classified accordingly. Every new input data point is assigned its class with the highest 

number of nearest neighbors - representing its closest match from that dataset [24]. 

XGBoost is an efficient gradient-boosting algorithm rooted in decision trees that performs well 

on large or complex datasets, using multiple decision trees to increase classification accuracy. 

Gradient Boosting Machine (GBM), however, remains one of the leading artificial intelligence 

techniques thanks to its seamless parallel processing capability and superior predictive accuracy 

[25]. CatBoost is an efficient gradient-boosting algorithm tailored to categorical datasets that 

solve preprocessing issues associated with them, making their analysis much simpler [26]. 
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LightGBM is an efficient gradient-boosting algorithm based on decision trees that deliver fast 

performance for large datasets [27]. 

2.4 Evaluation 

The optimal performance of the machine learning technique with all features was assessed by 

comparing the accuracy of each method, using a formula that includes True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN). To minimize variability and 

optimize computational time, a stratified 10-fold cross-validation method for performance 

evaluation was employed and the process was repeated three times. The performance matrix 

scores are calculated using accuracy, precision, recall, and F1-score that can be explained in 

equation (8), equation (9), equation (10), and equation (11): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 x 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (11) 

2.5 Explainable Machine Learning 

Explainable machine learning aims to make machine learning models more transparent 

and understandable. It addresses the complexity of models like deep neural networks, providing 

insights into decision-making processes [28]. This transparency is crucial for trust-building 

between machine learning systems and users and has found applications in healthcare and other 

fields [31-34]. Key techniques in explainable machine learning include feature importance scores 

and SHapley Additive ExPlanations (SHAP). Feature importance scores help assess variable 

importance in models [36], while SHAP offers explanations for predictions by quantifying each 

feature's impact [37]. SHAP's versatility extends to various models and applications [38, 39]. 

Explainable machine learning enhances model interpretability and trust, benefiting multiple 

domains. 

 

3. RESULTS AND DISCUSSION 

3.1 Missing Value Imputation 

 

We evaluate the percentages of missing values in the dataset's features. For instance, the 

"cp" feature has 143 missing data (3,02% of the total), "exang" has 48 missing data (1,02%), and 

"slope" has 22 missing data (0,46%). However, "sex", "age", "chol", "trestbps", "oldpeak", 

"restecg", "fbs", "thalach", and "target" features have no missing data (0%). The process of 

handling missing values is explained in Figure 1. 

The most effective model for addressing missing values in the 'cp' variable is XGBoost, 

achieving a score of 0.949, closely followed by RF with a score of 0.946. In handling missing 

values in the 'exang' variables, both RF and XGBoost demonstrated superior performance, scoring 

0.994, with DT (0.986) and LightGBM (0.982) following closely. Regarding imputing missing 

values for the 'slope' variable, RF emerged as the top-performing model, scoring 0.922, while 

XGBoost followed closely with a score of 0.919. Hence, XGBoost and RF were robust models 

for missing values in the 'cp' variable. At the same time, RF excelled in addressing missing values 

in the 'slope' and 'exang' variables. The Results Selection of the best model for feature imputation 

is shown in Table 1. 
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Table 1 Results Selection of the best model for feature imputation 

Model 
Accuracy 

CP EXANG SLOPE 

CatBoost 0.92 0.98 0.90 

Decision Tree 0.93 0.99 0.90 

KNN Classifier 0.74 0.88 0.75 

LightGBM 0.93 0.98 0.89 

Logistic Regression 0.44 0.73 0.57 

Neural Network 0.48 0.76 0.63 

Naive Bayes 0.41 0.71 0.53 

Random Forest 0.95 0.99 0.92 

Support Vector Machine 0.48 0.75 0.58 

XGBoost 0.95 0.99 0.92 

 

3.2 Feature Elimination and Classification Model Selection4 

 

Table 2 The accuracy values of each model using all available features 

Model Accuracy Precision Recall F1 Score 

CatBoost 0.98 0.98 0.98 0.98 

Decision Tree 0.97 0.98 0.97 0.98 

KNN Classifier 0.95 0.96 0.94 0.95 

LightGBM 0.97 0.98 0.97 0.97 

Logistic Regression 0.76 0.77 0.77 0.77 

Naive Bayes 0.71 0.79 0.61 0.69 

Neural Network 0.82 0.82 0.84 0.83 

Random Forest 0.99 0.99 0.98 0.99 

Support Vector Machine 0.81 0.82 0.82 0.82 

XGBoost 0.99 0.99 0.98 0.99 

 

In this study, an analysis was conducted on various classification models used to identify 

the risk of heart disease. Initially, the performance of the models was evaluated using all available 

features. The results in Table 2 showed that two models, RF and XGBoost, achieved the highest 

accuracy, almost 0.99. 

 

Table 3 The accuracy values of the Random Forest models using the feature selection results 

from SpFSR using the Random Forest Wrapper 
 

Number of 

features 
List Feature Accuracy Precision Recall F1 Score 

2 slope, cp 0.75 0.73 0.82 0.77 

3 slope, chol, cp 0.87 0.89 0.86 0.87 
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Number of 

features 
List Feature Accuracy Precision Recall F1 Score 

4 restecg, chol, thalach, age 0.99 0.99 0.99 0.99 

5 cp, restecg, thalach, chol, trestbps 0.99 0.99 0.98 0.99 

6 cp, slope, thalach, chol, trestbps, restecg 0.98 0.99 0.97 0.98 

7 
cp, chol, thalach, slope, trestbps, age, 

restecg 
0.98 0.99 0.98 0.98 

 

Table 4 The accuracy values of the XGBoost models using the feature selection results from 

SpFSR using XGBoost Wrapper 

 

Number of 

features 
List Feature Accuracy Precision Recall F1 Score 

2 slope, cp 0.75 0.73 0.82 0.77 

3 cp, slope, thalach 0.84 0.84 0.84 0.84 

4 slope, restecg, cp, chol 0.91 0.91 0.91 0.91 

5 slope, cp, restecg, thalach, chol 0.97 0.98 0.96 0.97 

6 cp, slope, thalach, chol, trestbps, restecg 0.98 0.99 0.98 0.98 

7 
cp, restecg, chol, thalach, trestbps, slope, 

oldpeak 
0.98 0.99 0.98 0.98 

 

In this study, feature selection using the SpFSR method identified the most critical subset 

of features to enhance model performance. The results showed that by selecting only four features 

(chol, age, restecg, and thalach), the RF model achieved an accuracy of 0.99 (Table 3), while 

XGBoost reached an accuracy of 0.91 (Table 4). This suggests that RF remains the preferred 

model after feature reduction. Additionally, this RF model with four features can provide highly 

accurate predictions of heart disease risk with straightforward interpretation of results, providing 

valuable guidance in developing more efficient diagnostic tools to assess this risk. Furthermore, 

findings from this research could prove instrumental in creating more effective diagnostic tools.   

Reducing the features to these four variables significantly impacts model interpretability. 

Here's how they can be explained: (chol) Blood cholesterol levels provide essential data for 

assessing cardiovascular disease risks; (Age) is a significant risk factor; (Restecg) results offer 

insights into the heart's condition at rest, and; (ThalaCh) measures the maximum heart rate during 

stress testing, offering a key indicator of overall cardiovascular health. Moreover, this RF model 

with four features can make highly accurate predictions of heart disease risk with easily 

interpretable results.  

3.3 Explainable Machine Learning with Permutation Importance and SHAP Summary Plot 

Permutation importance is an invaluable tool in feature analysis, quantifying each 

feature's importance in accurate predictions by tracking how feature changes impact model 

performance. Randomly permuting feature values calculate it and note any significant variance in 

model performance - with greater variance indicating increased significance for accurate 

predictions. Based on permutation importance results for particular features, Restecg stands out 

with its exceptional average permutation significance of 0.4021 and low standard deviation of 

0.0087, signaling its significant effect on model performance and vulnerability to random 

permutations. Thalach also makes an impactful statement with a permutation importance of 

roughly 0.3245, making him sensitive to changes that could impede model performance. Although 
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his influence is less profound, Chol still manages to have a meaningful permutation impact of 

around 0.2813, significantly altering prediction accuracy. Finally, Age significantly identifies 

cardiovascular risks with an average permutation importance value of 0.2577, further validating 

the previously selected features. Restecg and Thalach mainly contribute towards increasing the 

RF model's ability to detect heart disease risks. 

 

 
Figure 2 SHAP Summary Plot 

In Figure 2, the SHAP Summary plot provides insights into feature impacts on 

predictions. For 'restecg,' points scatter on both sides of the zero line, indicating mixed positive 

and negative impacts depending on feature values. Lower values (blue) tend to have a negative 

impact, while higher values (red) are more positive. 'Thalach' generally has a positive impact, 

with most points on the positive side and higher feature values (red) having a more substantial 

positive effect. 'Chol' shows positive and negative impacts, with no clear color pattern, suggesting 

a complex influence on predictions. 'Age' has a predominantly negative impact, as most points lie 

on the negative side, and higher feature values (red) intensify this negative effect. 

Extensive research has examined the relationship between restecg, thalach, chol, and age 

in the context of heart disease. Lakatta & Levy [40] emphasized the role of arterial and cardiac 

aging, especially age's impact on cardiovascular disease. Zaini & Awang [41] listed major heart 

disease risk factors, including age, cholesterol (chol) levels, and electrocardiographic results 

(restecg). Kostis et al. [42] provided valuable insights into age's connection to cardiovascular 

health. Further studies have reinforced these findings. Jacobs et al. [43] found a link between low 

blood cholesterol levels and mortality, while Hedayatnia et al. [44] explored dyslipidemia's 

impact on cardiovascular disease events. Electrocardiograms and maximum heart rate have also 

been identified as crucial predictors of heart disease. Kostis et al. [42] delved into the relationship 

between age and heart rate in individuals without cardiovascular diseases. This body of research 

comprehensively underscores the significant influence of age, cholesterol, and 

electrocardiographic results on heart disease, offering a comprehensive understanding of factors 

contributing to cardiovascular well-being. 

  

4. CONCLUSIONS 

 

This study addresses the challenge of missing data in a heart disease dataset with 3.02%, 

1.02% and 0.46% missing entries across three dimensions - clinical profile (cp), exang (0.01%) 

and slope (0.004%) missing values respectively. Through advanced imputation methods such as 

XGBoost's accuracy rates of 0.95 for cp and 0.99 for exang while RF recorded rates of 0.95, 0.99, 

and 0.92 - these results highlight their effectiveness at managing missing values while improving 

data quality analysis for heart disease risk analysis. 

Furthermore, our research comprehensively evaluated various classification models using 

the SpFSR feature selection method. Initial findings included RF and XGBoost models with high 

accuracies of up to 0.99. Once feature selection was complete, four main features (chol, age, 

restecg and thalach) remained central, with RF reaching an accuracy of 0.99 while XGBoost hit 
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0.91. This simplified approach to four variables enhanced interpretability without jeopardizing 

accuracy. We employed the RF model to identify heart disease using four features - blood 

cholesterol ('chol'), age ('age'), resting electrocardiogram results (restecg) and maximum heart 

rate during stress tests (thalach). Our findings provide more efficient diagnostic tools, providing 

accurate yet understandable models to predict cardiovascular disease more quickly and reliably. 
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