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Abstrak 

Gelombang laut (wind waves) merupakan fenomena alam yang utamanya dibangkitkan 

oleh angin.  Informasi tinggi dan periode gelombang sangat diperlukan dalam berbagai bidang 

kelautan, seperti rekayasa pantai, perikanan, dan transportasi maritim. Namun, untuk 

memprediksi tinggi gelombang secara akurat masih menjadi tantangan karena sifat stokastik 

gelombang laut itu sendiri. Beberapa pendekatan untuk memprediksi tinggi gelombang telah 

dikembangkan, termasuk model numerik dan metode pembelajaran mesin, seperti algoritma 

Long-Short Term Memory (LSTM) yang saat ini telah mendapatkan cukup banyak perhatian 

peneliti. Tujuan penelitian ini adalah untuk mengembangkan model prakiraan tinggi gelombang 

laut menggunakan algoritma LSTM di kawasan perairan Kepulauan Seribu Jakarta. Dataset 

dari ERA5 terdiri komponen angin zonal dan meridional  dan tinggi gelombang 

signifikan , yang digunakan untuk melatih dan menguji model LSTM. Hasil penelitian 

menunjukkan bahwa model LSTM dapat memprediksi tinggi gelombang signifikan dengan 

bagus. Prediksi menggunakan dataset ERA5 terlihat lebih mendekati data lapang menggunakan 

serta data pengukuran angin dengan Automatic Weather System (AWS) ( ) dengan nilai 

RMSE, MAE, MAPE berturut-turut yaitu 0,1535 m, 0,1181 m dan 37,11%. Sehingga hasil 

evaluasi model menunjukkan kinerja yang baik, dengan nilai RMSE, MAE yang relatif rendah, 

serta MAPE yang baik. Nilai akurasi prediksi tinggi gelombang yang paling tinggi ditemukan 

untuk prediksi dalam satu minggu (7 hari) ke depan. 

 

Kata kunci—Deep Learning, Peramalan, LSTM, Gelombang Laut, Tinggi Gelombang 

Signifikan 

Abstract 

Ocean waves (wind waves) are natural phenomena primarily generated by the wind. 

Information about wave height and period is highly crucial in various marine fields such as 

coastal engineering, fisheries, and maritime transportation. However, accurately predicting 

wave height remains a challenge due to the stochastic nature of ocean waves themselves. 

Several approaches to predicting wave height have been developed, including numerical models 

and machine learning methods, such as the Long-Short Term Memory (LSTM) algorithm, which 

has currently garnered significant attention from researchers. The objective of this research is 

to develop a forecast model for ocean wave height using the LSTM algorithm in the waters of 

the Thousand Islands region in Jakarta. The ERA5 dataset comprises zonal and meridional 

wind components and significant wave height, along with wind measurement data using the 

Automatic Weather System (AWS) instrument, which was utilized to train and test the LSTM 

model. The research results demonstrate that the LSTM model can predict significant wave 

height effectively. Predictions using the ERA5 significant height dataset are observed to be 

closer to field data, with RMSE, MAE, and MAPE values of 0.1535 m, 0.1181 m, and 37.11% 

respectively. Thus, the model evaluation results indicate good performance, with relatively low 

RMSE and MAE values, and a good MAPE value. The highest accuracy in wave height 

prediction is found for forecasts one week (7 days) ahead.  
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1. INTRODUCTION 
 

Ocean waves can be defined as the rising and falling process of seawater molecules 

forming crests and troughs [1]. Waves located on the ocean’s surface are commonly caused by 

wind transferring its energy to the water, and big waves, or swells, can travel over long 

distances. Wind waves are the most dominant waves in the marine meteorological field. The 

factors determining wind-wave growth are 1) wind speed; 2) The distance over which the wind 

blows across the water in the same direction (Fetch); 3) the duration or period of wind blowing; 

4) water depth (for shallow water). These factors work together to determine the wave's growth. 

As the factors increase, so does the size, length, and speed of the resulting waves. 

Wave height is an important design parameter in coastal and marine engineering design, 

fisheries, exploration, power generation, and maritime transportation [2,3]. Information about 

wave height can be used in determining the layout of ports, shipping lanes, and coastal 

structures for disaster mitigation such as coastal abrasion, thus having significant implications 

for national security. The limited in-situ observations carried out to observe the ocean in 

general, as well as the limited and discontinuous data from measurements and observations of 

sea waves, make wave height models providing current wave prediction information [4]. 

However, in reality, making accurate predictions for sea wave height information is very 

difficult due to the stochastic nature of ocean waves themselves [2]. 

Several methods have been developed for wave height prediction using empirical 

methods, such as the Sverdroup-Munk-Bretscheider (SMB) method and the Darbyshire method 

[5] used for wave height significant prediction. However, empirical methods cannot describe sea 

surface wave conditions in detail. Numerical models have been proven effective in predicting 

wave height over large spatial and temporal ranges. However, when computing large models, 

high-performance computers and significant time costs are required due to the large amount of 

data and the complexity of the calculations, especially for higher-resolution grid computations 

in nearshore zones with complex seafloor topography [6,7,8]. The principle of numerical 

models is to obtain wave height, period, and other information by solving the wave spectrum 

equations from marine physical processes. Third-generation models like the Wave Model 

(WAM) [9], WAVEWATCH-III [10,11], and Simulating Waves Nearshore (SWAN) [12,13] 

are among the most advanced numerical models used. The WAM and WAVEWATCH-II 

models have similar structures, using wave spectrum equations to simulate waves. Some studies 

show that the SWAN model accurately simulates waves in coastal regions when boundary 

conditions are accurate. However, the fixed energy spectrum equations with fixed expressions 

hardly characterize the complex and changeable ocean environment in a comprehensively fine 

way [22].  

With the advancement of technology in artificial intelligence, especially in machine 

learning, many machine learning models are used for wave height prediction by learning the 

data variability used, such as the Backpropagation Neural Network–Mind Evolutionary 

algorithm [8], JST backpropagation [14] and Regression Neural Network algorithm [15]. 

Research on wave height prediction using Artificial Neural Networks (ANNs) continues to 

evolve, from simple machine learning algorithms to deep learning with more complex 

algorithms. Recently, the Long Short-Term Memory (LSTM) algorithm, which is a 

reconstruction of the Recurrent Neural Network (RNN), has attracted much attention from 

researchers for predicting time series data in weather [16,17] and metocean forecasting, 

including significant wave height prediction [2,18,19]. Some studies also compare the 

performance of LSTM with other RNN algorithms [20] and even combine LSTM with other 

models to enhance its performance [21,22,23]. The goal of this research is to develop a 

significant wave height forecasting model using the LSTM algorithm. 

The Seribu Islands Jakarta waters were opted as a study area to perform sea wave height 

predictions using the LSTM deep learning method. The Seribu Islands' waters are open to the 

Java Sea and Natuna Sea through the Karimata Strait, so monsoonal wind conditions and sea 

surface waves vary depending on the monsoonal period and other weather factors.  The peak of 
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the northwest monsoon (NWM) period occurs in December-February when strong and stable 

northwest monsoonal winds blow. The sea waves and swells are generally high during this 

period. The maximum wave height from the swell generally occurs in this period, related to the 

development of tropical cyclones in the South China Sea and Natuna Sea [24,25]. In contrast, 

during the southeast monsoon (SEM) period, easterly – southeasterly monsoonal winds are fully 

developed during July-September, generating much higher mean wave height since wave fetch 

is much farther across the Java Sea than during the NWM period [24]. Information on surface 

waves and direction in the study area is needed by the Seribu islands community, such as for 

small fisheries activity, sea transportation between islands and Jakarta ports, as well as coastal 

islands recreations. The objectives of this study are to apply the LSTM method for developing 

surface wave prediction in the Seribu islands and to evaluate the predicted surface waves in 

terms of statistical quantification.   

 

2. METHODS 

2.1 Datasets and Area of Study 

The dataset was collected from the official Copernicus Climate Data Store (CDS) 

website implemented by the ECMWF (European Center for Medium Range Forecast). The 

dataset used for predicting significant wave height consists of zonal and meridional components 

(U10 and V10 components) and significant wave height data from ERA5 reanalysis. ERA5 is 

the fifth generation ECMWF reanalysis for the global climate and weather for the past 4 to 7 

decades and ERA5 is the fifth-generation reanalysis data from ECMWF for global climate and 

weather over 4 to 7 decades [26]. Wind component and significant wave height data were 

collected from ERA5 ECMWF data every hour from 1997 to 2022 located in the North Java 

Waters. This dataset was chosen because ERA5 data is an approximation of actual sea 

conditions and provides comprehensive global data publicly available, it allows any user to test 

the present method and provides long-term data that provides comprehensive and open global 

data [19].  

Figure 1. Research Location 

As for field data for comparison, we used Automatic Weather Station (AWS) 

instrument data installed in the Semak Daun Island, Seribu Islands, DKI Jakarta during the 

period from March 2022 to June 2022. AWS data used is wind direction and speed data. The 

research locations can be seen in Figure 1. 

2.2 Methodology 

 In general,   the step for significant wave height forecasting using Long-Short Term 

Memory (LSTM) can be seen in Figure 2. 

 

Figure 2. Research flowchart 

2. 3 Preprocessing Data 

2. 3.1 UV Komponent Conversion 

For datasets derived from wind components, Data preprocessing started with converting 

wind components (U, V) into significant wave height   data using the SPM (1984) 

formula. Additionally, field data from AWS is transformed into significant wave height 

 The overall process of converting significant wave height data based on wind 

components can be visualized in Figure 3. 

 

Figure 3. Converting process for zonal and meridional components 
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2.3.2 Data Normalization  

Data normalization is used to prevent data with large values from dominating data with 

a small value range. The normalization method used is min-max normalization with a range of 

0-1. The min-max normalization formula can be seen in the following equation [27]: 
 

 

Where : 

  =  original value of the data 

 = minimum value of the data 

 = maximum value of the data  

 

2. 4 LSTM  

Long Short-Term Memory (LSTM) is a variant of the Recurrent Neural Network (RNN) 

unit [28]. Like RNN, LSTM networks also consist of modules with recurrent processing and the 

main application of RNN is in the processing and prediction of sequence data. However, RNNs 

suffer from the problems of exploding and vanishing gradients [2]. The LSTM network has a 

significant advantage over the traditional RNN network in finishing the problem by replacing 

the hidden layer with a memory cell that can store information for a long period [29]. The 

architecture of LSTMs is built as follows: inside the memory block, there are one or more 

central cells that are self-looped into three multiplicative units called input, output and the forget 

gates [19]. The input gate shields the memory block from irrelevant inputs, while the output 

gates protect other units from irrelevant information within the current block [28]. 

Figure 4. Schematic Diagram of LSTM unit [2] 

 

For a sequence of input  , the value of   can influence LSTM output or spatial 

distance . The training process learns the quantitative relationship of this influence. The 

LSTM structure resembles a square matrix with the central part being the LSTM units except 

for input  and output . LSTM units are connected end-to-end. The same layer uses the 

output from the previous unit as input to the last unit. The output from the previous layer is used 

as input to the next layer, and finally, the output is obtained. A schematic diagram of the LSTM 

unit can be described in Figure 4. 

2.5 Model Validation 

To quantify the accuracy and performance of the built model in predicting significant wave 

height, we used three metric evaluations, i.e. root mean square error (RMSE), mean absolute 

error (MAE), and mean absolute error percentage (MAPE) [30]. RMSE is chosen because it is 

considered more sensitive to large deviations between predicted values and actual results. Each 

metric is presented in the following formulas: 

 

 

 

Where : 

   =  the actual value. 

   = the predicted value. 

    = the total number of samples. 
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3. RESULT AND DISCUSSION 

3.1 Preprocessing Data 

Before entering the LSTM process, U10 and V10 components from ECMWF-ERA5 

data are converted into significant wave height data  based on the equation in Figure 1. 

Then, it becomes the input data for training and validating the LSTM model using wind 

datasets . Next, both the significant wave height from wind  and significant 

wave height data from ERA5  are normalized by scaling the datasets to the range (-

1,1). This rescaling is important because LSTM cells using the sigmoid function are sensitive to 

a relatively large number of changes, and rescaling is necessary to avoid issues during the 

training process [31]. Figure 4 describes the difference between the data before normalization 

(4a) and after normalization (4b). There is no change in the data pattern; only changes in values 

occur within the range of -1 to 1. 

(a) 

(b) 

Figure 4. Before and after data normalization 

2.1 Significant Wave Height Prediction  

The LSTM model is optimized using the Adam optimizer function [32]. Several 

hyperparameters are utilized for applying the LSTM model, such as the number of hidden 

layers, epochs, batch size, and learning rate. The number of hidden layers represents the number 

of computations in the training process, the batch size is used to control how often the network's 

weights are updated, the learning rate determines the learning speed [33] and epochs refer to the 

number of iterations or training cycles performed by the algorithm [34]. It is important to note 

that too many epochs can lead to overfitting [35].  

The training   dataset for 1997-2021 using 100 epochs shows a final training 

loss of 0.00064. Training loss measures how the model predicts the given training datasets. 

Then, the trained data is tested using the 2022 data. Figure 5 shows a comparison between the 

training dataset (black), significant wave height data  in 2022 (red), and the LSTM 

prediction results (blue). Visually, the LSTM prediction results can follow the same trendline 

pattern as the significant wave height data converted from wind speed data in 2022. This 

indicates that the prediction results can follow the patterns formed from the training dataset and 

learn event patterns over time. LSTM models were designed to learn and remember over a long 

sequence and do not depend on pre-specified lagged observations. Hence, it can produce 

consistently good results for higher lead times [36]. 

The training  dataset using the same hyperparameters shows a final training 

loss of 0.0017. These training loss and validation loss values indicate that the model built with 

the specified hyperparameters performs well in predicting the datasets. Figure 6 shows a 

comparison between the training dataset (black), actual significant wave height data converted 

from wind speed in 2022 (red), and LSTM prediction results (blue). Visually, it can be seen that 

the LSTM prediction results can follow the same pattern as the actual significant wave height 

data in 2022. This indicates that the prediction results can follow the patterns formed from the 

training dataset and learn event patterns over time 
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Figure 5. Significant wave height  forecasting performance using LSTM 

 

As mentioned in the introduction, wind significantly influences wave height conditions 

in a region. The Asian-Australian monsoon system influences the climate in Indonesia, where 

the wind blows from Indonesia to Australia during the northwest monsoon (NEM) from 

December to February, causing a rainy season in Indonesia. In contrast to the southeast 

monsoon (SEM) during June-August, the wind blows from Australia to Indonesia, and 

Indonesia has a dry season. Monsoon winds blow periodically and vary in direction and 

intensity each season [37]. This monsoon system will further affect the variability of the 

oceanographic parameters [38].   

From the forecasting of the LSTM model results, for both the  and the 

 dataset is not significantly different from the actual data (Table 1 and Table 2). 

Whereas, based on the table, we can observe the seasonal variation of significant wave heights. 

The average significant wave height from all datasets shows that during the southeast monsoon, 

the average significant wave height is higher than during the northwest monsoon. This is 

consistent with the research [4,39] using ECMWF-ERA5 data, which stated that the seasonal 

average significant wave height during SEM in the North of Java is higher than during the 

NWM.  
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Figure 6. Significant wave height  forecasting performance using LSTM 

 

The difference in average significant wave height occurs because, in the NWM, there is 

an active Asian Monsoon, where areas with high average wave height are generally located to 

the north or in areas bordering open seas, such as the Karimata Strait, Natuna Sea, and the 

western region of Sumatra Island. Conversely, in the SEM, there is an active Australian 

Monsoon, and high waves occur in the sea to the south. This is related to fetch length, wind 

speed, and wind duration. In the NWM, the wind blows from Asia towards Australia; north of 

the equator, the wind blows strongly for a long duration, resulting in a longer fetch and thus 

higher waves. Meanwhile, south of the equator, the wind blows weaker due to obstruction 

(deflection) when passing through areas caused by the force generated by the Earth's rotation. 

Therefore, when entering waters to the south of the equator, the fetch formed is shorter 

compared to the north, while in the SEM where the Australian Monsoon blows towards Asia, 

the southern equatorial region has a longer fetch, resulting in high waves occurring in the 

southern waters 

 

 
 

Table 1. The average of significant wave height from  dataset 
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Table 2. The average of significant wave height from  dataset 

    

    

    

    

    

 

The field data used is the significant wave height data from the instrument Automatic 

Weather Station (AWS) installed at KJA Balai Sea Farming, Semak Daun Island, during March-

June 2022. Figure 7 shows the visualization of the comparison between significant wave heights 

from  and significant wave height from  and . The LSTM predictions for 

significant wave height . using the ERA5 dataset are influenced by global factors and 

data resolution differences. The reanalysis results from global data account for complex weather 

patterns and ocean circulation, offering predictions closer to actual conditions due to higher 

spatial resolution compared to field data. However, the location of the AWS instrument and data 

retrieval from ECMWF-ERA5 can impact results, especially in sheltered areas like Semak Daun 

Island's shallow water, potentially leading to discrepancies in wind speed data recorded by 

AWS compared to global reanalysis data. Therefore, while LSTM predictions exhibit similar 

patterns across datasets, variations stemming from global factors, data resolution, and data 

retrieval locations should be considered when interpreting significant wave height predictions. 

 

Figure 7 Visualization of the comparison between significant wave height from  and 

significant wave height from  and  

2.3 Model Validation 

The LSTM model's performance is evaluated using RMSE, MAPE, and MAE metrics. 

Table 3 displays differences in these metrics for  
 and  datasets across various prediction timeframes (1 year, 6 months, 3 months, 

1 month, and 7 days). The model's accuracy is evident from the low RMSE, MAE, and MAPE 

values, indicating precise predictions of significant wave heights. The highest accuracy in wave 

height prediction is found for forecasts one week (7 days) ahead. Furthermore, comparing the 

model's predictions with field data, the ERA5 dataset  closely matches with field data 

( ), with RMSE, MAE, and MAPE of 0.1535, 0.1181, and 37.11, respectively.  

 
Tabel 3 LSTM Model Validation 

   
 

   

      

      

      

      

      

      

      

      

      

      

      

      

 

4. CONCLUSION 
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The LSTM model constructed was trained using different datasets, namely based on the 

significant wave height conversion results from ERA5 wind component (Hs) and significant 

wave height data from ERA5. The predicted significant wave height based on the LSTM model 

showed good performance with the actual data. The seasonal mean significant wave height from 

LSTM forecasting also matches the average actual significant wave height data. The model 

performance was evaluated using RMSE, MAE, and MAPE metrics. The evaluation results 

indicated that the LSTM model provided good results in predicting significant wave height, with 

the lowest RMSE, MAE, and MAPE values for the 7-day prediction being 0.0095, 0.0071, and 

2.052, respectively. Thus, the use of the LSTM model for predicting significant wave height 

yielded satisfactory results, although the result can be influenced by various factors such as data 

quality and assumptions used in the model. Furthermore, comparison with field data ( ) 

also indicated a good fit, with predictions using Hs  data showing the highest accuracy, 

resulting in RMSE, MAE, and MAPE values of 0.1535, 0.1181, and 37.11, respectively. 
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