Obstacles Detection in Underwater Environment Using ROV Based on Convolutional Neural Network
 https://doi.org/10.22146/ijccs.101698
  https://doi.org/10.22146/ijccs.101698        Purwidi Asri(1*), Yuning Widiarti(2), Endang Pudji Purwanti(3), Endah Wismawati(4), M. Firman Tsany Arifin(5)
(1) Politeknik Perkapalan Negeri Surabaya
(2) Department of Marine Electrical Engineering, Politeknik Perkapalan Negeri Surabaya
(3) Department of Shipbuilding Engineering, Politeknik Perkapalan Negeri Surabaya
(4) Department of Marine Mechanical Engineering, Politeknik Perkapalan Negeri Surabaya Surabaya
(5) Department of Marine Electrical Engineering, Politeknik Perkapalan Negeri Surabaya
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Y. Widiarti, W. Wirawan, and S. Suwadi, “Joint time-reversal precoding and spatial diversity technique for acoustic communication in shallow water environment,” International Journal of Intelligent Engineering and Systems, vol. 13, no.1, pp.237-247, 2020, doi: 10.22266/ijies2020.0229.22 2. Y. Widiarti, E. Setiawan, H.A. Prasetiyo, B. Budianto, I. Sutrisno, A. Adianto, and M.B. Rahmat, “Corrosion Detection on Ship Hull Using ROV Based on Convolutional Neural Network,” International Journal of Marine Engineering Innovation and Research, vol. 9, no.1, pp. 218-229, 2024. [Online]. Available: https://iptek.its.ac.id/index.php/ijmeir/article/view/17235 [Accessed: 1-Nov-2024] 3. R. Kot, “Review of Collision Avoidance and Path Planning Algorithms Used in Autonomous Underwater Vehicles,” Electronics, vol.11, no. 15, 2022 [Online]. Available: https://doi.org/10.3390/electronics11152301 [Accessed: 3-Nov-2024] 4. M.A. Kamel, X. Yu, Y. Zhang, “Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations: A review,” Annu. Rev. Control, vol. 49, pp.128–144, 2020 [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1367578820300031 [Accessed: 3-Nov-2024] 5. E. Y. Lam, “Combining gray world and retinex theory for automatic white balance in digital photography,” Proceedings of the Ninth International Symposium on Consumer Electronics, 2005, doi: 10.1109/ISCE.2005.1502356 6. G. Buchsbaum, “A spatial processor model for object colour perception,” Journal of the Franklin Institute, vol. 310, no. 1, pp. 1–26, 1980 [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0016003280900587 [Accessed: 4-Nov-2024] 7. J. Van De Weijer, T. Gevers, and A. Gijsenij, “Edge-based color constancy,” IEEE Transactions on Image Processing, vol. 16, no. 9, pp. 2207–2214, 2010 [Online]. Available: https://staff.science.uva.nl/th.gevers/pub/GeversTIP07.pdf [Accessed: 4-Nov-2024] 8. R. Hummel, “Image enhancement by histogram transformation,” Computer Graphics and Image Processing, vol. 6, no. 2, pp. 184–195, 1977 [Online]. Available:https://www.sciencedirect.com/science/article/abs/pii/S0146664X77800117 [Accessed: 29-Okt-2024] 9. A. R. Awwalin, E. Setiawati, and C. Anam, "Implementasi Metode Contrast Limited Adaptive Histogram Equalization Dan Laplacian Of Gaussian Filter Untuk Peningkatan Kontras Citra CT," BERKALA FISIKA, vol. 24, no. 1, pp. 35-43, Jul. 2021. [Online]. Available: https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/39825 [Accessed: 25-Okt-2024] 10. C.C. Chang, J.Y. Hsiao, and C.P. Hsieh, "An Adaptive Median Filter for Image Denoising," Second International Symposium on Intelligent Information Technology Application, Shanghai, China, 2008, pp. 346-350, doi: 10.1109/IITA.2008.259. 11. C.J. Prabhakar, P.U.P. Kumar, “Underwater image denoising using adaptive wavelet subband thresholding,” Proceedings of the 2010 International Conference on Signal and Image Processing, Chennai, India, 15–17 December 2010; pp. 322–327, doi: 10.1109/ICSIP.2010.5697491 12. Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," in IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999-7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827. 13. Q. Xie, Y. Wang, J. Ding, and J. Niu, "Light Convolutional Neural Network for Digital Predistortion of Radio Frequency Power Amplifiers," in IEEE Communications Letters, vol. 28, no. 10, pp. 2377-2381, Oct. 2024, doi: 10.1109/LCOMM.2024.3443104. 14. Z. Gao, Z. Lu, J. Wang, S. Ying, and J. Shi, "A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images," in IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 7, pp. 3163-3173, July 2022, doi: 10.1109/JBHI.2022.3153671. 15. R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81. 16. Z. Wang, K. Xu, S. Wu, L. Liu, L. Liu, and D. Wang, "Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2," in IEEE Access, vol. 8, pp. 116569-116585, 2020, doi: 10.1109/ACCESS.2020.3004198. 17. Q. Xie, D. Zhou, R. Tang, and H. Feng, "A Deep CNN-Based Detection Method for Multi-Scale Fine-Grained Objects in Remote Sensing Images," in IEEE Access, vol. 12, pp. 15622-15630, 2024, doi: 10.1109/ACCESS.2024.3356716.
 DOI: https://doi.org/10.22146/ijccs.101698
  DOI: https://doi.org/10.22146/ijccs.101698																				
Article Metrics
 Abstract views : 3447
                         |
 Abstract views : 3447
                         |  views : 2096
 views : 2096
        Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1
 





 * Corresponding Author
* Corresponding Author
								 
  
  
  
  
  
 


 
				 Hide
 
							Hide
						 Show all
							Show all
						