Improved Wavelet-GLCM for Robust Batik Motif Classification
Gregorius Adi Pradana(1), Agus Harjoko(2*)
(1) Master of Computer Science Study Program, Universitas Gadjah Mada
(2) Department of Computer Science and Electronics, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
E. Winarno, W. Hadikurniawati, A. Septiarini, and H. Hamdani, “Analysis of color features performance using support vector machine with multi-kernel for batik classification,” International Journal of Advances in Intelligent Informatics, vol. 8, no. 2, 2022, doi: 10.26555/ijain.v8i2.821.
A. H. Rangkuti, A. Harjoko, and A. Putra, “A Novel Reliable Approach for Image Batik Classification That Invariant with Scale and Rotation Using MU2ECS-LBP Algorithm,” in Procedia Computer Science, 2021. doi: 10.1016/j.procs.2021.01.075.
A. Fadlil, I. Riadi, and I. J. D. E. Purwadi Putra, “Comparison of Machine Learning Performance Using Naive Bayes and Random Forest Methods to Classify Batik Fabric Patterns,” Revue d’Intelligence Artificielle, vol. 37, no. 2, 2023, doi: 10.18280/ria.370214.
A. Septiarini, R. Saputra, A. Tejawati, M. Wati, H. Hamdani, and N. Puspitasari, “Analysis of Color and Texture Features for Samarinda Sarong Classification,” in 2021 4th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2021, 2021. doi: 10.1109/ISRITI54043.2021.9702797.
A. E. Minarno, F. D. S. Sumadi, H. Wibowo, and Y. Munarko, “Classification of batik patterns using K-nearest neighbor and support vector machine,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 3, 2020, doi: 10.11591/eei.v9i3.1971.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “Batik Classification using Microstructure Co-occurrence Histogram,” International Journal on Informatics Visualization, vol. 8, no. 1, 2024, doi: 10.62527/joiv.8.1.2152.
F. U. Karimah and A. Harjoko, “Classification of batik kain besurek image using speed up robust features (SURF) and gray level co-occurrence matrix (GLCM),” in Communications in Computer and Information Science, 2017. doi: 10.1007/978-981-10-7242-0_7.
N. Suciati, D. Herumurti, and A. Y. Wijaya, “Feature extraction using gray-level co-occurrence matrix of wavelet coefficients and texture matching for batik motif recognition,” in Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 2017. doi: 10.1117/12.2266933.
B. J. Filia et al., “Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset,” in Procedia Computer Science, 2023. doi: 10.1016/j.procs.2023.10.552.
S. Aras, A. Setyanto, and Rismayani, “Classification of Papuan Batik Motifs Using Deep Learning and Data Augmentation,” in 2022 4th International Conference on Cybernetics and Intelligent System, ICORIS 2022, 2022. doi: 10.1109/ICORIS56080.2022.10031320.
F. Budiman, A. Suhendra, D. Agushinta, and A. Tarigan, “Wavelet decomposition levels analysis for Indonesia traditional batik classification,” J Theor Appl Inf Technol, vol. 92, no. 2, 2016.
M. K. Nazir, M. A. N. U. Ghani, A. Ashraf, S. M. Alam, R. U. Farooq, and Z. Latif, “A Textile Image Classification based on Texture and Shape Features,” in 4th International Conference on Innovative Computing, ICIC 2021, 2021. doi: 10.1109/ICIC53490.2021.9693067.
W. Herulambang, M. N. Hamidah, and F. Setyatama, “Comparison of SVM and BPNN Methods in the Classification of Batik Patterns Based on Color Histograms and Invariant Moments,” in Proceeding - ICoSTA 2020: 2020 International Conference on Smart Technology and Applications: Empowering Industrial IoT by Implementing Green Technology for Sustainable Development, 2020. doi: 10.1109/ICoSTA48221.2020.1570615583.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1







