Rainfall Intensity Prediction Using LSTM and Random Forest Hybrid Model
Ari Pambudi(1*), Diah Aryani(2), Ronald Nur Sunarto(3)
(1) Universitas Esa Unggul
(2) Universitas Esa Unggul
(3) Universitas Esa Unggul
(*) Corresponding Author
Abstract
Predicting rainfall accurately is essential for managing water resources and preventing hydrometeorological disasters. The unpredictability of daily rainfall patterns necessitates accurate and effective prediction methods. This study proposes a residual hybrid approach to forecast rainfall using historical rainfall data alone. To record temporal information, a Long Short-Term Memory (LSTM) model is used. patterns in the time series data and generate initial predictions. The residual, defined as the difference between actual values and LSTM predictions, is then used as the intend to use a Random Forest (RF) model for training, which learns the non-linear patterns not effectively captured by the LSTM. Although the dataset includes various meteorological variables such as temperature and humidity, this study uses only rainfall as the main input. The data is split into training and testing sets with an 80:20 ratio. Model performance is evaluated using MAE, MSE, and RMSE, with RMSE as the primary evaluation metric. Experimental results show that the LSTM-RF hybrid model consistently delivers greater accuracy of predictions in comparison to single-model approaches, demonstrating strong potential in improving the reliability of rainfall forecasting based solely on historical data.
Keywords
Full Text:
PDFReferences
M. A. Akbar, A. Muhni, R. Rifqan, D. Gunarsih, and L. F. Rahmatillah, “Pemanfaatan Metode Radiocarbon Dating Dalam Penelitian Tsunami Dan Perubahan Iklim Di Indonesia,” ARMADA J. Penelit. Multidisiplin, vol. 1, no. 6, pp. 508–515, 2023, doi: 10.55681/armada.v1i6.592.
I. M. Faiza, G. Gunawan, and W. Andriani, “Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning untuk Deteksi Bencana Banjir,” J. Minfo Polgan, vol. 11, no. 2, pp. 59–63, 2022, doi: 10.33395/jmp.v11i2.11657.
D. Setiawan, “Analisis Curah Hujan di Indonesia untuk Memetakan Daerah Potensi Banjir dan Tanah Longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition (SVD),” Eng. Math. Comput. Sci. J., vol. 3, no. 3, pp. 115–120, 2021, doi: 10.21512/emacsjournal.v3i3.7428.
D. R. Mahendra, “Pemanfaatan Data Statistik Resmi dalam Mitigasi Bencana di Indonesia,” Madani J. Ilm. Multidisiplin, vol. 1, no. 11, pp. 571–574, 2023, [Online]. Available: https://doi.org/10.5281/zenodo.10396458
M. Rizaldi, R. D. Putri, M. Nur, S. Amin, M. Akli, and N. Setyawan, “Pengaplikasian Artificial Neural Network (ANN) dalam Memprediksi Curah Hujan Menggunakan Python,” Semin. Nas. Fortei7-4, pp. 369–373, 2021.
S. Nurjanah and E. Mursalin, “Pentingya Mitigasi Bencana Alam Longsor Lahan: Studi Persepsi Mahasiswa,” J. Basicedu, vol. 6, no. 1, pp. 515–523, 2021, doi: 10.31004/basicedu.v6i1.1937.
R. Nurpambudi and R. A. Aziz, “Prediksi Kejadian Banjir Di Wilayah Kota Bandar Lampung Dengan Metode Artificial Neural Network,” Proseding Semin. Nas. Has. Penelit. dan Pengabdi., pp. 93–104, 2022.
M. Marzuki, R. Ramadhan, H. Yusnaini, M. Vonnisa, R. Safitri, and E. Yanfatriani, “Changes in Extreme Rainfall in New Capital of Indonesia (IKN) Based on 20 Years of GPM-IMERG Data,” Trends Sci., vol. 20, no. 11, 2023, doi: 10.48048/tis.2023.6935.
S. Salcedo-Sanz et al., “Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review,” Theor. Appl. Climatol., vol. 155, no. 1, pp. 1–44, 2024, doi: 10.1007/s00704-023-04571-5.
F. Zhou, Y. Chen, and J. Liu, “Application of a New Hybrid Deep Learning Model That Considers Temporal and Feature Dependencies in Rainfall–Runoff Simulation,” Remote Sens., vol. 15, no. 5, 2023, doi: 10.3390/rs15051395.
A. E. Abdishakur, A. M. Tahlil, and A. A. Aden, “Hybrid Machine Learning Model for Rainfall Prediction Using Time-Series Data,” Int. J. Eng. Trends Technol., vol. 73, no. 6, pp. 17–29, 2025, doi: 10.14445/22315381/IJETT-V73I6P103.
Z. F. Jailani and D. Nurmadewi, “Hybrid Machine Learning Prediksi Banjir Menggunakan Lstm Dan Random Forests Pada Geodata Hybrid Machine Learning Predicts Flooding Using Lstm and Random Forests on Geodata,” J. Inf. Technol. Comput. Sci., vol. 8, no. 1, pp. 35–41, 2025.
A. Saud, “Predicting Rainfall Intensity Using SAE-LSTM and SAE-Bilstm Models : A Case of Kathmandu Valley,” no. July, 2025.
E. Kartawijaya, G. Firmansyah, B. Tjahjono, and E. Unggul, “Comparative Analysis of Time Series Methods LSTM and ARIMA for Predicting Inventory Availability ( Case Study : PT XYZ ),” vol. 18, no. 1, pp. 9–19, 2025.
S. Djaballah, L. Saidi, K. Meftah, A. Hechifa, M. Bajaj, and I. Zaitsev, “A hybrid LSTM random forest model with grey wolf optimization for enhanced detection of multiple bearing faults,” Sci. Rep., vol. 14, no. 1, p. 23997, 2024, doi: 10.1038/s41598-024-75174-x.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A Search Space Odyssey,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 10, pp. 2222–2232, 2017, doi: 10.1109/TNNLS.2016.2582924.
F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10, pp. 2451–2471, 2000, doi: 10.1162/089976600300015015.
C. Olah, “Understanding LSTM Networks,” Colah’s Blog. 2015. [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies,” in A Field Guide to Dynamical Recurrent Neural Networks, S. C. Kremer and J. F. Kolen, Eds., IEEE Press, 2001, pp. 237–243.
A. Graves, “Speech Recognition with Deep Recurrent Neural Networks,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 6645–6649, 2013. doi: 10.1109/ICASSP.2013.6638947.
L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
A. Liaw and M. Wiener, “The R Journal: Classification and regression by randomForest,” R J., vol. 2, no. 3, pp. 18–22, 2002, [Online]. Available: http://www.stat.berkeley.edu/
D. R. Cutler et al., “Random forests for classification in ecology,” Ecology, vol. 88, no. 11, pp. 2783–2792, 2007, doi: 10.1890/07-0539.1.
R. Díaz-Uriarte and S. Alvarez de Andrés, “Gene selection and classification of microarray data using random forest,” BMC Bioinformatics, vol. 7, pp. 1–13, 2006, doi: 10.1186/1471-2105-7-3.
F. Tang and H. Ishwaran, “Random forest missing data algorithms,” Stat. Anal. Data Min., vol. 10, no. 6, pp. 363–377, 2017, doi: 10.1002/sam.11348.
P. Probst, M. N. Wright, and A. L. Boulesteix, “Hyperparameters and tuning strategies for random forest,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 9, no. 3, pp. 1–19, 2019, doi: 10.1002/widm.1301.
C. Crisci, B. Ghattas, and G. Perera, “A review of supervised machine learning algorithms and their applications to ecological data,” Ecol. Modell., vol. 240, no. June 2018, pp. 113–122, 2012, doi: 10.1016/j.ecolmodel.2012.03.001.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1






