Deep Learning for Automatic Assessment and Feedback in LMS-Based Education
Aniek Suryanti Kusuma(1*), Anak Agung Gde Ekayana(2), Desak Made Dwi Utami Putra(3)
(1) Institut Bisnis dan Teknologi Indonesia
(2) Institut Bisnis dan Teknologi Indonesia
(3) Institut Bisnis dan Teknologi Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
A. Akavova, Z. Temirkhanova, and Z. M. Lorsanova, “Adaptive Learning and Artificial Intelligence in the Educational Space,” E3s Web Conf., vol. 451, p. 6011, 2023, doi: 10.1051/e3sconf/202345106011.
H. Munir, B. Vogel, and A. Jacobsson, “Artificial Intelligence and Machine Learning Approaches in Digital Education: A Systematic Revision,” Information, vol. 13, no. 4, p. 203, 2022, doi: 10.3390/info13040203.
H. Ji, L. Suo, and C. Hua, “AI Performance Assessment in Blended Learning: Mechanisms and Effects on Students’ Continuous Learning Motivation,” Front. Psychol., vol. 15, 2024, doi: 10.3389/fpsyg.2024.1447680.
E. Kldiashvili, M. G. de S. Ana, and Z. Maia, “Academic Integrity Within the Medical Curriculum in the Age of Generative Artificial Intelligence,” Heal. Sci. Reports, vol. 8, no. 2, 2025, doi: 10.1002/hsr2.70489.
K. A. A. Gamage, S. C. P. Dehideniya, Z. Xu, and X. Tang, “ChatGPT and Higher Education Assessments: More Opportunities Than Concerns?,” J. Appl. Learn. Teach., vol. 6, no. 2, 2023, doi: 10.37074/jalt.2023.6.2.32.
M. Sallam and K. Al‐Salahat, “Below Average ChatGPT Performance in Medical Microbiology Exam Compared to University Students,” Front. Educ., vol. 8, 2023, doi: 10.3389/feduc.2023.1333415.
M. A. AlAfnan, S. Dishari, M. Jovic, and K. Lomidze, “ChatGPT as an Educational Tool: Opportunities, Challenges, and Recommendations for Communication, Business Writing, and Composition Courses,” J. Artif. Intell. Technol., 2023, doi: 10.37965/jait.2023.0184.
A. W. Fazil, M. Hakimi, A. K. Shahidzay, and A. Hasas, “Exploring the Broad Impact of AI Technologies on Student Engagement and Academic Performance in University Settings in Afghanistan,” Riggs J. Artif. Intell. Digit. Bus., vol. 2, no. 2, pp. 56–63, 2024, doi: 10.31004/riggs.v2i2.268.
Y. Sun, “A Comprehensive Evaluation Scheme of Students’ Classroom Learning Status Based on Analytic Hierarchy Process,” Educ. Innov. Emerg. Technol., vol. 3, no. 4, pp. 1–10, 2023, doi: 10.35745/eiet2023v03.04.0001.
C. D. González-Carrillo, F. Restrepo‐Calle, J. J. R. Echeverry, and F. A. González, “Automatic Grading Tool for Jupyter Notebooks in Artificial Intelligence Courses,” Sustainability, vol. 13, no. 21, p. 12050, 2021, doi: 10.3390/su132112050.
E. A. E. Lukwaro, K. Kalegele, and D. G. Nyambo, “A Review on NLP Techniques and Associated Challenges in Extracting Features From Education Data,” Int. J. Comput. Digit. Syst., vol. 15, no. 1, pp. 961–979, 2024, doi: 10.12785/ijcds/160170.
T. Shaik et al., “A Review of the Trends and Challenges in Adopting Natural Language Processing Methods for Education Feedback Analysis,” Ieee Access, vol. 10, pp. 56720–56739, 2022, doi: 10.1109/access.2022.3177752.
F. Chen and Y. Cui, “Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance,” J. Learn. Anal., vol. 7, no. 2, pp. 1–17, 2020, doi: 10.18608/jla.2020.72.1.
J. Wei, “The Feasibility of Integrating Natural Language Model in Daily English Education,” Lect. Notes Educ. Psychol. Public Media, vol. 73, no. 1, pp. 130–134, 2024, doi: 10.54254/2753-7048/73/20241031.
G. Smith, R. Haworth, and S. Žitnik, “Computer Science Meets Education: Natural Language Processing for Automatic Grading of Open-Ended Questions in eBooks,” J. Educ. Comput. Res., vol. 58, no. 7, pp. 1227–1255, 2020, doi: 10.1177/0735633120927486.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1






