Leaf Disease Detection Model in Gayo Coffee Plantations Using Deep Learning
Rahmad Hidayat(1*)
(1) Politeknik Negeri Lhokseumawe
(*) Corresponding Author
Abstract
Coffee is one of the most important tropical plantation commodities, significantly supporting the economy of the Gayo Highlands. Attacks of various diseases can significantly reduce the productivity and quality of Gayo coffee. This study developed a leaf disease detection model in coffee plants using the Convolutional Neural Network (CNN) method. The model developed in this study used two datasets. The first dataset, the Gayo Coffee Leaf Disease (PDKG), comprises 900 images of healthy and diseased leaves collected from Gayo coffee plantations. The acquired images in the PDKG dataset were then preprocessed to improve their image quality. The results of model training and testing on the PDKG dataset showed an accuracy of 0.91. On the public Coffee Leaf Diseases (CLD) dataset, the model achieved an accuracy of 0.95, representing a 7.1% increase compared to previous studies. The resulting model can help local coffee farmers in the Gayo Highlands detect leaf diseases early and manage plant health more efficiently and accurately.
Keywords
Full Text:
PDFReferences
Putri, A. Y. P., & Sodik, A. (2019). Identifikasi penyakit tanaman kopi arabika dengan metode K-Nearest Neighbor (K-NN). Seminar Nasional Sains dan Teknologi Terapan, VII, 759–764.
Badan Pusat Statistik Nasional. (2022). Jumlah produksi kopi di Indonesia (2017–2021). Jakarta: Badan Pusat Statistik.
Auliansyah, G., Fachuruddin, F., & Yunus, Y. (2019). Evaluasi kesesuaian lahan pada tanaman kopi arabika (Coffea arabica L.) organik menggunakan Sistem Informasi Geografis (SIG) di Kecamatan Pegasing Kabupaten Aceh Tengah. Jurnal Ilmiah Mahasiswa Pertanian, 4(2), 329–338.
Badan Pusat Statistik. (2015). Data perkembangan luas areal dan produksi tanaman tahunan dan semusim komoditi perkebunan 7 tahun terakhir (2009–2015) Kabupaten Aceh Tengah. Dinas Perkebunan dan Kehutanan Kabupaten Aceh Tengah.
Dishutbun. (2012). Statistik Perkebunan dan Kehutanan Tahun 2011. Dinas Perkebunan dan Kehutanan Kabupaten Aceh Tengah, Takengon, Indonesia.
Sugiarti, L. (2017, Juni). Identifikasi hama dan penyakit pada tanaman kopi di kebun percobaan Fakultas Pertanian Universitas Winaya Mukti. Jurnal Agro Wiralodra, 1, 16–22.
Sufi, S. (2019). Implementasi program pemberdayaan petani kopi: Pada Koperasi Baitul Qiradh Baburrayyan Kota Takengon. Lhokseumawe: Unimal Press.
Badan Pusat Statistik Aceh. (2014). Jumlah produksi kopi di Kabupaten Bener Meriah (2010–2014). Bener Meriah.
Dharmadewi, A. (2020, September). Analisis kandungan klorofil pada beberapa jenis sayuran hijau sebagai alternatif bahan dasar food supplement. Jurnal Emasains: Jurnal Edukasi Matematika dan Sains, 9, 171–176.
Mahfud, M. C. (2012). Teknologi dan strategi pengendalian penyakit karat daun untuk meningkatkan produksi kopi nasional. Malang: Balai Pengkajian Teknologi Pertanian Jawa Timur.
Sutoyo, T., dkk. (2009). Teori pengolahan citra digital. Yogyakarta: Andi.
Esgario, J. G. M., Krohling, R. A., & Ventura, J. A. (2019). Deep learning for classification and severity estimation of coffee leaf biotic stress. arXiv. https://arxiv.org/abs/1907.11561
Montalbo, F. J. P., & Hernandez, A. A. (2020). Classifying barako coffee leaf diseases using deep convolutional models. International Journal of Advances in Intelligent Informatics, 6(2), 197–209. https://doi.org/10.26555/ijain.v6i2.495
Sutoyo, T., Mulyanto, E., Suhartono, V., & Nurhayati, D. O. W. (2009). Teori pengolahan citra digital. Yogyakarta: Andi; Semarang: UDINUS.
Cmcbinus. (2023). Pengolahan citra digital: Konsep dan teknik. https://binus.ac.id/malang/2023/07/pengolahan-citra-digital-konsep-dan-teknik/
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1







