Optimasi Bobot Jaringan Syaraf Tiruan Mengunakan Particle Swarm Optimization
 https://doi.org/10.22146/ijccs.3492
  https://doi.org/10.22146/ijccs.3492        Harry Ganda Nugraha(1*), Azhari SN(2)
(1) 
(2) 
(*) Corresponding Author
Abstract
Abstrak
Masalah peramalan adalah masalah yang sering ditemukan dalam proses pengambilan keputusan. Tool yang cukup populer untuk menangani masalah peramalan adalah jaringan syaraf tiruan. Jaringan syaraf tiruan banyak digunakan karena kemampuannya untuk meramalkan data nonlinear time series. Algoritma pembelajaran yang sering digunakan untuk memperbaiki bobot pada jaringan syaraf tiruan adalah backpropagation. Namun proses pembelajaran backpropagation terkadang menemui kendala seperti over fiting sehingga tidak dapat menggeneralisasi masalah. Untuk mengatasi masalah tersebut diusulkan penggunaan particle swarm optimization untuk melatih bobot pada jaringan. Performa dari masing-masing model akan diukur dengan mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance. Untuk keperluan analisis model digunakan data time series inflasi di indonesia. Metode yang diusulkan menunjukan sistem jaringan hybrid mampu menangani masalah peramalan data time series dengan performa mendekati jaringan syaraf tiruan backpropagation.
.
Kata kunci—jaringan syaraf tiruan, particle swarm optimization, prediction of change in direction, average relative variance .
Abstract
Forecasting problem is common problem that easily found in decision making process. The popular tool to handle that problem is artificial neural network. Artificial neural network have been widely use because its ability to forecast nonlinear time series data. The learning method that have been widely use to train artificial neural network weight is backpropagation. Otherwise backpropagation learning process sometimes find problem such as over fiting so it can’t generalized the problem. Particle swarm optimization method had been proposed to train artificial neural network weigth. Mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance had been use to measures the model performance. Indonesia inflation time series data had been use to analyzed the model. The proposed method show that hybrid system could handle the time series forecasting problem as good as backpropagation artificial neural network
Keywords—artificial neural network, particle swarm optimization, prediction of change in direction, average relative variance.
Full Text:
PDF DOI: https://doi.org/10.22146/ijccs.3492
  DOI: https://doi.org/10.22146/ijccs.3492																				
Article Metrics
 Abstract views : 6656
                         |
 Abstract views : 6656
                         |  views : 6280
 views : 6280
        Refbacks
- There are currently no refbacks.
Copyright (c) 2014 IJCCS - Indonesian Journal of Computing and Cybernetics Systems

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1
 





 * Corresponding Author
* Corresponding Author
											 
  
  
  
  
  
 


 
				 Hide
 
							Hide
						 Show all
							Show all
						