Optimasi Bobot Jaringan Syaraf Tiruan Mengunakan Particle Swarm Optimization

https://doi.org/10.22146/ijccs.3492

Harry Ganda Nugraha(1*), Azhari SN(2)

(1) 
(2) 
(*) Corresponding Author

Abstract


Abstrak

Masalah peramalan adalah masalah yang sering ditemukan dalam proses pengambilan keputusan. Tool yang cukup populer untuk menangani masalah peramalan adalah jaringan syaraf tiruan. Jaringan syaraf tiruan banyak digunakan karena kemampuannya untuk meramalkan data nonlinear time series. Algoritma pembelajaran yang sering digunakan untuk memperbaiki bobot pada jaringan syaraf tiruan adalah backpropagation. Namun proses pembelajaran backpropagation terkadang menemui kendala seperti over fiting sehingga tidak dapat menggeneralisasi masalah. Untuk mengatasi masalah tersebut diusulkan penggunaan particle swarm optimization untuk melatih bobot pada jaringan. Performa dari masing-masing model akan diukur dengan mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance. Untuk keperluan analisis model digunakan data time series inflasi di indonesia. Metode yang diusulkan menunjukan sistem jaringan hybrid mampu menangani masalah peramalan data time series dengan performa mendekati jaringan syaraf tiruan backpropagation.

.

Kata kunci—jaringan syaraf tiruan, particle swarm optimization, prediction of change in direction, average relative variance .

 

 

Abstract

Forecasting problem is common problem that easily found in decision making process. The popular tool to handle that problem is artificial neural network. Artificial neural network have been widely use because its ability to forecast nonlinear time series data. The learning method that have been widely use to train artificial neural network weight is backpropagation. Otherwise backpropagation learning process sometimes find problem such as over fiting so it can’t generalized the problem. Particle swarm optimization method had been proposed to train artificial neural network weigth. Mean square error, mean absolute percentage error, normalized mean square error, prediction of change in direction, average relative variance had been use to measures the model performance. Indonesia inflation time series data had been use to analyzed the model. The proposed method show that hybrid system could handle the time series forecasting problem as good as backpropagation artificial neural network

 

Keywordsartificial neural network, particle swarm optimization, prediction of change in direction, average relative variance.


Full Text:

PDF



DOI: https://doi.org/10.22146/ijccs.3492

Article Metrics

Abstract views : 5623 | views : 5588

Refbacks

  • There are currently no refbacks.




Copyright (c) 2014 IJCCS - Indonesian Journal of Computing and Cybernetics Systems

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2