Outlier Detection Credit Card Transactions Using Local Outlier Factor Algorithm (LOF)

https://doi.org/10.22146/ijccs.46561

Silvano Sugidamayatno(1*), Danang Lelono(2)

(1) Master Program of Computer Science, FMIPA UGM, Yogyakarta
(2) Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta
(*) Corresponding Author

Abstract


Threats or fraud for credit card owners and banks as service providers have been harmed by the actions of perpetrators of credit card thieves. All transaction data are stored in the bank's database, but are limited in information and cannot be used as a knowledge. Knowledge built with credit card transaction data can be used as an early warning by the bank. The outlier analysis method is used to build the knowledge with a local outlier factor algorithm that has high accuracy, recall, and precision results and can be used in multivariate data. Testing uses a matrix sample and confusion method with attributes date, categories, numbers, and countries. The test results using 1803 transaction data from five customers, indicating that the average value accuracy of LOF algorithms (96%), higher than the average accuracy values of the INFLO and AFV algorithms (84% and 77%).


Keywords


credit card; outlier analysis; local outlier factor algorithm

Full Text:

PDF


References

[1]      E. Turban, J. E. Aronson, and Ting-Peng Liang, Decision Support Systems and Intelligent     Systems, Upper Saddle River, NJ: Pearson Prentice Hall, 2007.

[2]        V. Vaishali, "Fraud Detection in Credit Card by Clustering Approach", International             Journal of Computer Applications, Vol. 98, no. 3, July 2014. Available:             https://research.ijcaonline.org/volume98/number3/pxc3897225.pdf. [Accessed:        October-10-2018].

[3]        S. V. Bhosale, "A Survey: Outlier Detection in Streaming Data Using Clustering        Approached", (IJCSIT) International Journal of Computer Science and Information Technologies, vol. 5, p. 6050 – 6053, 2014. Available:             http://ijcsit.com/docs/Volume%205/vol5issue05/ijcsit2014050510.pdf. [Accessed:    October-10-2018].

[4]        M. Goldstein and S. Uchida, "A Comparative Evaluation of Unsupervised Anomaly             Detection Algorithms for Multivariate Data", PloS one, p. 1-31, April 2016. Available:              https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152173. [Accessed:         October-10-2018].

[5]       J. Auskalnis, N. Paulauskas, and A. Baskys, "Application of local outlier factor algorithm     to detect anomalies in computer network", Elektronika ir Elektrotechnika, vol. 24, p. 96–            99, 2018. Available: http://eejournal.ktu.lt/index.php/elt/article/view/20972. [Accessed:     October-20-2018].

[6]        J. Tang, H. Y. T. Ngan, J. Tang, and H. Y. T. Ngan, "Traffic Outlier Detection by      Density Based Bounded Local Outlier Factors", HKBU Institutional Repository, vol. 1,            p. 6 – 18, 2016. Available:             https://repository.hkbu.edu.hk/cgi/viewcontent.cgi?article=7235&context=hkbu_staff_p       ublication . [Accessed: October-10-2018].

[7]       M. Breunig, Markus, Hans peter Kriegel, Raymond T Ng, and Jörg Sander, "LOF:      Identifying Density-Based Local Outliers", Proceedings of the 2000 ACM SIGMOD        International Conference on Management of Data, 2000, p. 1 - 2. Available:           http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf. [Accessed: October-10-2018].

[8]        R. Devaki, "Credit Card Fraud Detection Using Time Series Analysis",           International    Journal of Computer Applications, no. 3, p. 8 - 10, 2014. Available:             https://www.ijcaonline.org/proceedings/icscn/number3/16159-1031. [Accessed:        October-10-2018].

[9]        V. Kathiresan, "Outlier Detection on Financial Card or Online Transaction Data        Using   Manhattan Distance Based Algorithm", International Journal of Computer Science &       Technology in Contemporary Research, vol. 12, p. 1100 - 1103, 2016.              Available:http://www.ijcrcst.com/papers/IJCRCST-DECEMBER16-01.pdf. [Accessed:             October-10-2018].

[10]     Y. Yazid, "Mendeteksi Kecurangan Pada Transaksi Kartu Kredit Untuk Verifikasi     Transaksi Menggunakan Metode SVM", Indonesian Journal of Applied Informatics, vol.          1, no. 2, p. 61-66, 2017. Available: https://jurnal.uns.ac.id/ijai/article/view/14378. [Acces

            sed: October-10-2018].



DOI: https://doi.org/10.22146/ijccs.46561

Article Metrics

Abstract views : 46 | views : 40

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2