Twitter’s User Opinion About Master and Doctoral Degrees: A Model of Sentiment Comparison
Victor Wiley(1*), Thomas Lucas(2)
(1) Cemerlang research
(2) Cemerlang research
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] Zhao, Jichang, Li Dong, Junjie Wu, and Ke Xu. "Moodlens: an emoticon-based sentiment analysis system for chinese tweets." In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1528-1531, 2012. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/2339530.2339772 [Accessed: 17-Des-2019]
[2] Farzindar, Atefeh, and Diana Inkpen. "Natural language processing for social media." Synthesis Lectures on Human Language Technologies 8, no. 2 ,2015 [Online]. Available: https://www.morganclaypool.com/doi/abs/10.2200/S00659ED1V01Y201508HLT030 [Accessed: 17-Des-2019]
[3] Shoukry, Amira, and Ahmed Rafea. "Preprocessing Egyptian dialect tweets for sentiment mining." In The Fourth Workshop on Computational Approaches to Arabic Script-based Languages, 2012. [Online]. Available: https://www.researchgate.net/profile/Mounir_Zrigui/publication/233746674_Proposal_of_a_method_of_enriching_queries_by_statistical_analysis_to_search_for_information_in_Arabic/links/00463514f316c46113000000.pdf#page=54 [Accessed: 17-Des-2019]
[4] Tripathy, Abinash, Ankit Agrawal, and Santanu Kumar Rath. "Classification of sentiment reviews using n-gram machine learning approach." Expert Systems with Applications 57 (2016): 117-126. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S095741741630118X [Accessed: 29-Okt-2020]
[5] Soheily-Khah, Saeid, Pierre-François Marteau, and Nicolas Béchet. "Intrusion detection in network systems through hybrid supervised and unsupervised machine learning process: A case study on the iscx dataset." In 2018 1st International Conference on Data Intelligence and Security (ICDIS), pp. 219-226. [Online]. IEEE, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8367767 [Accessed: 29-Okt-2020]
[6] Zhou, Shusen, Qingcai Chen, and Xiaolong Wang. "Active deep learning method for semi-supervised sentiment classification." Neurocomputing 120 (2013): 536-546. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925231213004888 [Accessed: 29-Okt-2020]
[7] Sarkar, Kamal, Mita Nasipuri, and Suranjan Ghose. "Machine learning based keyphrase extraction: Comparing decision trees, naïve Bayes, and artificial neural networks." JIPS 8, no. 4 (2012): 693-712. [Online]. Available: http://jips-k.org/journals/jips/digital-library/manuscript/file/22564/JIPS-2012-8-4-693.pdf [Accessed: 29-Okt-2020]
[8] Dhande, Lina L., and Girish K. Patnaik. "Analyzing sentiment of movie review data using Naive Bayes neural classifier." International Journal of Emerging Trends & Technology in Computer Science (IJETTCS) 3, no. 4 (2014): 313-320. [Online]. Available: http://student.blog.dinus.ac.id/windalistyaningsih/wp-content/uploads/sites/316/2017/07/IJETTCS-2014-08-25-138.pdf [Accessed: 29-Okt-2020]
[9] Khairnar, Jayashri, and Mayura Kinikar. "Machine learning algorithms for opinion mining and sentiment classification." International Journal of Scientific and Research Publications 3, no. 6 (2013): 1-6. [Online]. Available: http://www.ijcst.org/Volume4/Issue6/p12_4_6.pdf [Accessed: 29-Okt-2020]
[10] Saif, Hassan, Yulan He, Miriam Fernandez, and Harith Alani. "Contextual semantics for sentiment analysis of Twitter." Information Processing & Management 52, no. 1 (2016): 5-19. [Online]. Available: https://publications.aston.ac.uk/id/eprint/25812/1/Contextual_semantics_for_sentiment_analysis_of_Twitter.pdf [Accessed: 29-Okt-2020]
[11] Dey, Lopamudra, Sanjay Chakraborty, Anuraag Biswas, Beepa Bose, and Sweta Tiwari. "Sentiment analysis of review datasets using naive bayes and k-nn classifier." arXiv preprint arXiv:1610.09982 (2016). [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1610/1610.09982.pdf [Accessed: 29-Okt-2020]
[12] Mukherjee, Saurabh, and Neelam Sharma. "Intrusion detection using naive Bayes classifier with feature reduction." Procedia Technology 4,pp. 119-128, 2012 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212017312002964 [Accessed: 17-Des-2019]
[13] Calders, T., & Verwer, S. Three naive Bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2), pp. 277-292, 2010. [Online]. Available: https://link.springer.com/article/10.1007/s10618-010-0190-x [Accessed: 20-Des -2019]
[14] Peling, I. B. A., Arnawan, I. N., Arthawan, I. P. A., & Janardana, I. G. N. Implementation of Data Mining To Predict Period of Students Study Using Naive Bayes Algorithm. International Journal of Engineering and Emerging Technology, 2(1), pp.53-57, 2017. [Online]. Available: https://ojs.unud.ac.id/index.php/ijeet/article/view/34457 [Accessed: 17-Des-2019]
[15] Carlin, B. P., & Louis, T. A. Bayes and empirical Bayes methods for data analysis. Chapman and Hall/CRC, 2010. [Online]. Available: https://link.springer.com/article/10.1023/A:1018577817064 [Accessed: 17-Des-2019]
[16] Zaidi, N. A., Cerquides, J., Carman, M. J., & Webb, G. I. Alleviating naive Bayes attribute independence assumption by attribute weighting. The Journal of Machine Learning Research, 14(1), pp.1947-1988, 2013. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/2567709.2567725 [Accessed: 17-Des-2019]
[17] Pandey, U. K., & Pal, S. Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163,2011. [Online]. Available: https://arxiv.org/abs/1104.4163 [Accessed: 17-Des-2019]
[18] Calders, T., & Verwer, S. Three naive Bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2), pp.277-292, 2010. [Online]. Available: https://link.springer.com/article/10.1007/s10618-010-0190-x [Accessed: 20-Des -2019]
[19] Liu, B. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1),pp. 1-167, 2012. [Online]. Available: https://www.morganclaypool.com/doi/abs/10.2200/s00416ed1v01y201204hlt016 [Accessed: 17-Des-2019]
[20] Zhu, W., Zeng, N., & Wang, N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. NESUG proceedings: health care and life sciences, Baltimore, Maryland, 19,pp. 67, 2010. [Online]. Available: https://www.lexjansen.com/nesug/nesug10/hl/hl07.pdf [Accessed: 20-Des -2019]
[21] Ho, C. Y., Lai, Y. C., Chen, I. W., Wang, F. Y., & Tai, W. H. Statistical analysis of false positives and false negatives from real traffic with intrusion detection/prevention systems. IEEE Communications Magazine, 50(3), pp. 146-154, 2012. [Online]. Available: https://ir.nctu.edu.tw/bitstream/11536/15580/1/000301198700019.pdf [Accessed: 20-Des -2019]
[22] Bellazzi, R., Ferrazzi, F., & Sacchi, L. Predictive data mining in clinical medicine: a focus on selected methods and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(5), pp. 416-430, 2011. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.23 [Accessed: 17-Des-2019]
[23] Caleffi, P. M. The'hashtag': a new word or a new rule?. SKASE journal of theoretical linguistics, 12(2), 2015. [Online]. Available: http://www.skase.sk/Volumes/JTL28/pdf_doc/05.pdf [Accessed: 17-Des-2019]
[24] Bruns, A., Weller, K., Borra, E., & Rieder, B. Programmed method: Developing a toolset for capturing and analyzing tweets. Aslib Journal of Information Management, 2014. [Online]. Available: https://www.emerald.com/insight/content/doi/10.1108/AJIM-09-2013-0094/full/html [Accessed: 20-Des-2019]
DOI: https://doi.org/10.22146/ijccs.58579
Article Metrics
Abstract views : 2053 | views : 1916Refbacks
- There are currently no refbacks.
Copyright (c) 2020 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1