Internet of Things (IoT) Arduino-Based Classroom Monitoring Utilizes Temperature Sensors And CO2 Sensors

https://doi.org/10.22146/ijccs.76241

Tri Suratno(1*), Edi Saputra(2), Zainil Abidin(3), Daniel Arsa(4), Norman Syarief(5)

(1) Faculty of Science and Technology, Universitas Jambi, Jambi
(2) Faculty of Science and Technology, Universitas Jambi, Jambi
(3) Faculty of Science and Technology, Universitas Jambi, Jambi
(4) Faculty of Science and Technology, Universitas Jambi, Jambi
(5) Faculty of Science and Technology, Universitas Jambi, Jambi
(*) Corresponding Author

Abstract


Comfort room temperature is determined by indoor air quality, such as temperature and CO2 gas. This study aims to determine the comfort of a class by reviewing the number of students, CO2 gas, and temperature in an Arduino-based classroom using an automatic IoT system with a Completely Randomized Design (CRD) method. Research proves that there is a significant effect between the number of students on the concentration of CO2, but it does not directly affect the air temperature in the room. The lecture hall is still relatively safe but not ideal and requires a temperature reduction of -7oC.

Keywords


Thermal; IoT; RAL; Ideal Classroom

Full Text:

PDF


References

[1] S. G. Rivkin and J. C. Schiman, “Instruction Time, Classroom Quality, and Academic Achievement,” Econ. J., vol. 125, no. 588, pp. F425–F448, 2015, doi: 10.1111/ecoj.12315.

[2] M. P. Tavolacci, S. Grigioni, L. Richard, G. Meyrignac, P. Déchelotte, and J. Ladner, “Eating Disorders and Associated Health Risks Among University Students,” J. Nutr. Educ. Behav., vol. 47, no. 5, pp. 412-420.e1, 2015, doi: 10.1016/j.jneb.2015.06.009.

[3] S. Gaihre, S. Semple, J. Miller, S. Fielding, and S. Turner, “Classroom carbon dioxide concentration, school attendance, and educational attainment,” J. Sch. Health, vol. 84, no. 9, pp. 569–574, 2014, doi: 10.1111/josh.12183.

[4] P. Wargocki and D. P. Wyon, “Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork,” Build. Environ., vol. 112, pp. 359–366, 2017, doi: 10.1016/j.buildenv.2016.11.020.

[5] A. Kabirikopaei and J. Lau, “Uncertainty analysis of various CO2-Based tracer-gas methods for estimating seasonal ventilation rates in classrooms with different mechanical systems,” Build. Environ., vol. 179, no. May, p. 107003, 2020, doi: 10.1016/j.buildenv.2020.107003.

[6] A. M. Fiore, V. Naik, and E. M. Leibensperger, “Air quality and climate connections,” J. Air Waste Manag. Assoc., vol. 65, no. 6, pp. 645–685, 2015, doi: 10.1080/10962247.2015.1040526.

[7] P. Spachos and D. Hatzinakos, “Real-Time Indoor Carbon Dioxide Monitoring Through Cognitive Wireless Sensor Networks,” IEEE Sens. J., vol. 16, no. 2, pp. 506–514, 2016, doi: 10.1109/JSEN.2015.2479647.

[8] F. Wang et al., “Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation,” J. Am. Chem. Soc., vol. 138, no. 19, pp. 6298–6305, 2016, doi: 10.1021/jacs.6b02762.

[9] M. Grover, M. Maheswari, S. Desai, K. A. Gopinath, and B. Venkateswarlu, “Elevated CO2: Plant associated microorganisms and carbon sequestration,” Appl. Soil Ecol., vol. 95, pp. 73–85, 2015, doi: 10.1016/j.apsoil.2015.05.006.

[10] P. Tilak and M. M. El-Halwagi, “Process integration of Calcium Looping with industrial plants for monetizing CO2 into value-added products,” Carbon Resour. Convers., vol. 1, no. 2, pp. 191–199, 2018, doi: 10.1016/j.crcon.2018.07.004.

[11] M. Khezri, A. Heshmati, and M. Khodaei, “Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions,” Appl. Energy, vol. 306, no. PB, p. 117948, 2022, doi: 10.1016/j.apenergy.2021.117948.

[12] U. Satish, M. J. Mendell, K. Shekhar, T. Hotchi, and D. Sullivan, “Concentrations on Human Decision-Making Performance,” Environ. Health Perspect., vol. 120, no. 12, pp. 1671–1678, 2012.

[13] M. Cetin and H. Sevik, “Measuring the impact of selected plants on indoor CO2 concentrations,” Polish J. Environ. Stud., vol. 25, no. 3, pp. 973–979, 2016, doi: 10.15244/pjoes/61744.

[14] N. Gondchawar et al., “IoT based Smart Agriculture,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 6, pp. 838–842, 2017, doi: 10.17148/IJARCCE.2016.56188.

[15] V. Chang and C. Martin, “An industrial IoT sensor system for high-temperature measurement,” Comput. Electr. Eng., vol. 95, no. July 2020, p. 107439, 2021, doi: 10.1016/j.compeleceng.2021.107439.

[16] S. M. S. D. Malleswari and T. K. Mohana, “Air pollution monitoring system using IoT devices: Review,” Mater. Today Proc., no. xxxx, pp. 1–4, Jul. 2021, doi: 10.1016/j.matpr.2021.07.114.

[17] D. Mishra, A. Khan, R. Tiwari, and S. Upadhay, “Automated Irrigation System-IoT Based Approach,” Proc. - 2018 3rd Int. Conf. Internet Things Smart Innov. Usages, IoT-SIU 2018, pp. 1–4, 2018, doi: 10.1109/IoT-SIU.2018.8519886.

[18] N. Ahmed, D. De, and I. Hussain, “Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas,” IEEE Internet Things J., vol. 5, no. 6, pp. 4890–4899, 2018, doi: 10.1109/JIOT.2018.2879579.

[19] D. A. D. Audrey, Stanley, K. S. Tabaraka, A. Lazaro, and W. Budiharto, “Monitoring Mung Bean’s Growth using Arduino,” Procedia Comput. Sci., vol. 179, no. 2020, pp. 352–360, 2021, doi: 10.1016/j.procs.2021.01.016.

[20] H. F. Ellakany et al., “Effect of experimental Ornithobacterium rhinotracheale infection along with live infectious bronchitis vaccination in broiler chickens,” Poult. Sci., vol. 98, no. 1, pp. 105–111, 2019, doi: 10.3382/ps/pey324.

[21] H. A. A. Alsalimm, A. Abood, and L. M. R. Abbas, “Ability of Rhizobium leguminosarum inoculum to improve fava beans (Vicia faba) growth and produce some hydrolytic enzyme,” Iraqi J. Sci., vol. 59, no. 3, pp. 1231–1236, 2018, doi: 10.24996/IJS.2018.59.3A.11.

[22] M. W. Hatem, H. M. Shukri, K. A. Rasheed, M. H. Nawar, S. M. Hasan, and R. Adnan, “The effect of magnetically treated water against Fusarium wilt disease in tomato caused by the fungus Fusarium oxysporumand its effect on production under fertilized farming conditions,” Plant Arch., vol. 20, no. 1, pp. 533–536, 2020.

[23] A. N. F. Rahman, J. Genisa, A. Dirpan, and A. A. Badani, “Modification of dry grain processing for rice nutrition produced,” IOP Conf. Ser. Earth Environ. Sci., vol. 157, no. 1, 2018, doi: 10.1088/1755-1315/157/1/012036.

[24] Winconsin Department of Health Services, “Carbon Dioxide,” 2021. https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm (accessed Nov. 05, 2021).

[25] S. Jing, B. Li, M. Tan, and H. Liu, “Impact of relative humidity on thermal comfort in a warm environment,” Indoor Built Environ., vol. 22, no. 4, pp. 598–607, 2013, doi: 10.1177/1420326X12447614.

[26] Y. Li, Y. Yuan, C. Li, X. Han, and X. Zhang, “Human responses to high air temperature, relative humidity and carbon dioxide concentration in underground refuge chamber,” Build. Environ., vol. 131, no. December 2017, pp. 53–62, 2018, doi: 10.1016/j.buildenv.2017.12.038.

[27] A. M. Abbasi, M. Motamedzade, M. Aliabadi, R. Golmohammadi, and L. Tapak, “The impact of indoor air temperature on the executive functions of human brain and the physiological responses of body,” Heal. Promot. Perspect., vol. 9, no. 1, pp. 55–64, 2019, doi: 10.15171/hpp.2019.07.

[28] Vaillant Group, “What Is the Ideal Room Temperature?,” 2021. https://www.vaillant.co.uk/homeowners/advice-and-knowledge/ideal-room-temperature/ (accessed Nov. 06, 2021).

[29] M. A. Khan et al., “Morphological and genetic characterization of Fusarium oxysporum and its management using weed extracts in cotton,” J. King Saud Univ. - Sci., vol. 33, no. 2, p. 101299, 2021, doi: 10.1016/j.jksus.2020.101299.

[30] R. E. Miller, “ANALYSIS OF VARIANCE,” in Understanding Statistical Concepts Using S-plus, vol. 92, no. 6, Psychology Press, 2001, pp. 246–256. doi: 10.4324/9781410600875-41.

[31] H. E. Jamabo, N.A., Fubara, R.I., dan Dienye, “Feeding Frequency on Growth and Feed Conversion of Clarias Gariepinus ( Burchell , 1822 ) Fingerlings,” Int. J. Fish. Aquat. Stud., vol. 3, no. 1, pp. 353–356, 2015.

[32] P. Sunu, D. Sunarti, L. D. Mahfudz, and V. D. Yunianto, “Effect of synbiotic from Allium sativum and Lactobacillus acidophilus on hematological indices, antioxidative status and intestinal ecology of broiler chicken,” J. Saudi Soc. Agric. Sci., vol. 20, no. 2, pp. 103–110, 2021, doi: 10.1016/j.jssas.2020.12.005.

[33] Sugiyono, Statistika untuk Penelitian, 12th ed. Bandung: Alfabeta, 2007.

[34] L. I. Cioca, L. Ivascu, E. C. Rada, V. Torretta, and G. Ionescu, “Sustainable development and technological impact on CO2 reducing conditions in Romania,” Sustain., vol. 7, no. 2, pp. 1637–1650, 2015, doi: 10.3390/su7021637.

[35] A. W. Kleij, M. North, and A. Urakawa, “CO2 Catalysis,” ChemSusChem, vol. 10, no. 6, pp. 1036–1038, 2017, doi: 10.1002/cssc.201700218.

[36] Y. Wei, M. Maroto-Valer, and M. D. Steven, “Environmental consequences of potential leaks of CO2 in soil,” Energy Procedia, vol. 4, pp. 3224–3230, 2011, doi: 10.1016/j.egypro.2011.02.239.

[37] L. Yao, J. Shi, H. Xu, W. Shen, and C. Hu, “Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst,” Fuel Process. Technol., vol. 144, pp. 1–7, 2016, doi: 10.1016/j.fuproc.2015.12.009.

[38] J. T. Baker, L. H. Allen, and K. J. Boote, “Temperature effects on rice at elevated CO2 concentration,” J. Exp. Bot., vol. 43, no. 7, pp. 959–964, 1992, doi: 10.1093/jxb/43.7.959.

[39] N. Hanagata, T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube, “Tolerance of microalgae to high CO2 and high temperature,” Phytochemistry, vol. 31, no. 10, pp. 3345–3348, 1992, doi: 10.1016/0031-9422(92)83682-O.

[40] D. Zhou, G. Zhang, M. Prasad, and P. Wang, “The effects of temperature on supercritical CO2 induced fracture: An experimental study,” Fuel, vol. 247, no. February, pp. 126–134, 2019, doi: 10.1016/j.fuel.2019.02.099.



DOI: https://doi.org/10.22146/ijccs.76241

Article Metrics

Abstract views : 1832 | views : 1389

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2