Breast Cancer Classification Based on Mammogram Images Using CNN Method with NASNet Mobile Model

https://doi.org/10.22146/ijccs.98187

Diah Devi Pramesti(1), Yuniar Farida(2*), Dian Candra Rini Novitasari(3), Achmad Teguh Wibowo(4)

(1) Universitas Islam Negeri Sunan Ampel
(2) Universitas Islam Negeri Sunan Ampel
(3) Universitas Islam Negeri Sunan Ampel
(4) Universitas Islam Negeri Sunan Ampel
(*) Corresponding Author

Abstract


In Indonesia, the type of cancer that contributes to the highest death rate is breast cancer, so there is a great need for early examination, clinical examination, and screening, which includes mammography. Mammography is currently the most effective method for detecting early-stage breast cancer. This study aims to classify breast cancer cells based on mammogram images. The method used in this research is CNN (Convolutional Neural Network) with the NASNet Mobile model for classifying three classes: normal, benign, and malignant. The CNN method can learn various input attributes powerfully so that CNN can obtain more detailed data characteristics and has better detection capabilities. This research obtained the most optimal model based on the percentage of accuracy, sensitivity, and specificity values of 99.67%, 98.78%, and 99.35%, respectively. This research can be used to help radiologists as considerations in making breast cancer diagnosis decisions.


Keywords


Breast Cancer; CNN; Deep Learning; NASNet Mobile; Mammogram Image

Full Text:

PDF


References

World Health Organization, Cancer. 2022. Accessed: Sep. 13, 2022. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/cancer

Kementrian Kesehatan RI, Kanker Payudara Paling Banyak di Indonesia, Kemenkes Targetkan Pemerataan Layanan Kesehatan. Jakarta, Indonesia: Kementrian Kesehatan RI, 2022. [Online]. Available: https://www.kemkes.go.id/article/view/22020400002/kanker-payudara-paling-banyak-di-indonesia-kemenkes-targetkan-pemerataan-layanan-kesehatan.html

K. Gupta and N. Chawla, Analysis of Histopathological Images for Prediction of Breast Cancer Using Traditional Classifiers with Pre-Trained CNN, vol. 167. Elsevier B.V., 2020. doi: 10.1016/j.procs.2020.03.427.

K. S. A. Fazilov Sh. Kh., O. R. Yusupov, MAMMOGRAPHY IMAGE SEGMENTATION IN BREAST CANCER IDENTIFICATION USING THE OTSU METHOD, vol. 3, no. 8. 2022.

S. M. Shah, R. A. Khan, S. Arif, and U. Sajid, Artificial intelligence for breast cancer analysis: Trends & directions, vol. 142. 2022. doi: 10.1016/j.compbiomed.2022.105221.

S. Sapate, S. Talbar, A. Mahajan, N. Sable, S. Desai, and M. Thakur, Breast cancer diagnosis using abnormalities on ipsilateral views of digital mammograms, vol. 40, no. 1. 2020. doi: https://doi.org/10.1016/j.bbe.2019.04.008.

S. Azam et al., Mammographic microcalcifications and risk of breast cancer, vol. 125, no. 5. 2021. doi: 10.1038/s41416-021-01459-x.

S. Maqsood, R. Damaševičius, and R. Maskeliūnas, TTCNN: A Breast Cancer Detection and Classification towards Computer-Aided Diagnosis Using Digital Mammography in Early Stages, vol. 12, no. 7. 2022. doi: 10.3390/app12073273.

M. S. Ejaz and M. R. Islam, Masked face recognition using convolutional neural network, vol. 0. IEEE, 2019. doi: 10.1109/STI47673.2019.9068044.

M. Z. Amin and N. Nadeem, Convolutional Neural Network: Text Classification Model for Open Domain Question Answering System. 2018. [Online]. Available: http://arxiv.org/abs/1809.02479

R. N. S. Husna, A. R. Syafeeza, N. A. Hamid, Y. C. Wong, and R. A. Raihan, Functional magnetic resonance imaging for autism spectrum disorder detection using deep learning, vol. 83, no. 3. 2021. doi: 10.11113/JURNALTEKNOLOGI.V83.16389.

J. Huixian, The Analysis of Plants Image Recognition Based on Deep Learning and Artificial Neural Network, vol. 8. 2020. doi: 10.1109/ACCESS.2020.2986946.

Z. Cui, K. Henrickson, R. Ke, and Y. Wang, Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting, vol. 21, no. 11. 2020. doi: 10.1109/TITS.2019.2950416.

M. Koklu, I. Cinar, and Y. S. Taspinar, Classification of rice varieties with deep learning methods, vol. 187, no. November 2020. Elsevier B.V., 2021. doi: 10.1016/j.compag.2021.106285.

P. Rahul and P. Jagadeesh, Detection of Dementia Disease using CNN Classifier by Comparing with ANN Classifier. 2022. doi: 10.1109/ICBATS54253.2022.9759085.

Y. Wang, Q. Ge, W. Lu, and X. Yan, Well-Logging Constrained Seismic Inversion Based on Closed-Loop Convolutional Neural Network, vol. 58, no. 8. 2020. doi: 10.1109/TGRS.2020.2967344.

B. Feng, H. Zhou, G. Li, Y. Zhang, K. Sood, and S. Yu, Enabling Machine Learning with Service Function Chaining for Security Enhancement at 5G Edges, vol. 35, no. 5. 2021. doi: 10.1109/MNET.100.2000338.

Q. Zhang, J. Lin, H. Song, and G. Sheng, Fault Identification Based on PD Ultrasonic Signal Using RNN, DNN and CNN. 2018. doi: 10.1109/CMD.2018.8535878.

L. Wen, X. Li, X. Li, and L. Gao, A New Transfer Learning Based on VGG-19 Network for Fault Diagnosis. 2019. doi: 10.1109/CSCWD.2019.8791884.

C. Wang et al., Pulmonary Image Classification Based on Inception-v3 Transfer Learning Model, vol. 7. 2019. doi: 10.1109/ACCESS.2019.2946000.

V. Maeda-Gutiérrez et al., Comparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseases, vol. 10, no. 4. 2020. doi: 10.3390/app10041245.

F. Saxen, P. Werner, S. Handrich, E. Othman, L. Dinges, and A. Al-Hamadi, Face attribute detection with mobilenetv2 and nasnet-mobile, vol. 2019-Septe. IEEE, 2019. doi: 10.1109/ISPA.2019.8868585.

I. Priyanto, C. A. Hartanto, and A. M. Arymurthy, Change Detection of Floating Net Cages Quantities Utilizing Faster R-CNN. 2020. doi: 10.1109/IC2IE50715.2020.9274685.

M. Tan et al., Mnasnet: Platform-aware neural architecture search for mobile, vol. 2019-June. 2019. doi: 10.1109/CVPR.2019.00293.

S. Azimi, T. Kaur, and T. K. Gandhi, A deep learning approach to measure stress level in plants due to Nitrogen deficiency, vol. 173, no. June. Elsevier Ltd, 2021. doi: 10.1016/j.measurement.2020.108650.

A. Chavda, J. Dsouza, S. Badgujar, and A. Damani, Multi-Stage CNN Architecture for Face Mask Detection. 2021. doi: 10.1109/I2CT51068.2021.9418207.

J. Li, Q. Peng, D. Wu, Y. Sun, and W. Zhao, Lightning Insurance: A Fast Claim, High Accuracy Insurance Platform Based on Blockchain Technology and NASNET Algorithm. 2021. doi: 10.1109/AIBT53261.2021.00024.

S. Bharati, P. Podder, M. R. H. Mondal, and N. Gandhi, Optimized NASNet for Diagnosis of COVID-19 from Lung CT Images. Cham: Springer International Publishing, 2021.

T. Sadad et al., Brain tumor detection and multi-classification using advanced deep learning techniques, vol. 84, no. 6. 2021. doi: 10.1002/jemt.23688.

K. Radhika, K. Devika, T. Aswathi, P. Sreevidya, V. Sowmya, and K. P. Soman, Performance analysis of NASNet on unconstrained ear recognition, vol. SCI 871. Springer International Publishing, 2020. doi: 10.1007/978-3-030-33820-6_3.

S. Vallabhajosyula, V. Sistla, and V. K. K. Kolli, Transfer learning-based deep ensemble neural network for plant leaf disease detection, vol. 129, no. 3. Springer Berlin Heidelberg, 2022. doi: 10.1007/s41348-021-00465-8.

A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu, Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning, vol. 49, no. 1. 2022.

J. Suckling et al., The Mammographic Image Analysis Society Digital Mammogram Database, vol. 1069, no. JANUARY 1994. 1994. [Online]. Available: http://www.researchgate.net/publication/247927550_The_Mammographic_Image_Analysis_Society_Digital_Mammogram_Database’’Exerpta_Medica

M. Benco, R. Hudec, P. Kamencay, M. Zachariasova, and S. Matuskal, An advanced approach to extraction of colour texture features based on GLCM, vol. 11, no. 1. 2014. doi: 10.5772/58692.

A. A. Nugroho, I. Slamet, and Sugiyanto, Skins cancer identification system of HAMl0000 skin cancer dataset using convolutional neural network, vol. 2202, no. December. 2019. doi: 10.1063/1.5141652.

Y. Zhang, J. Gao, and H. Zhou, Breeds Classification with Deep Convolutional Neural Network, no. 24. 2020. doi: 10.1145/3383972.3383975.

P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, Fish species recognition using VGG16 deep convolutional neural network, vol. 13, no. 3. 2019. doi: 10.5626/JCSE.2019.13.3.124.

B. Bin Jia and M. L. Zhang, Multi-dimensional Classification via Selective Feature Augmentation, vol. 19, no. 1. 2022. doi: 10.1007/s11633-022-1316-5.

P. R. Hill, A. Kumar, M. Temimi, and D. R. Bull, HABNet: Machine Learning, Remote Sensing-Based Detection of Harmful Algal Blooms, vol. 13. 2020. doi: 10.1109/JSTARS.2020.3001445.

P. Anantha Prabha, G. Suchitra, and R. Saravanan, Cephalopods Classification Using Fine Tuned Lightweight Transfer Learning Models, vol. 35, no. 3. 2023. doi: 10.32604/iasc.2023.030017.

S. K. Addagarla, Real Time Multi-Scale Facial Mask Detection and Classification Using Deep Transfer Learning Techniques, vol. 9, no. 4. 2020. doi: 10.30534/ijatcse/2020/33942020.

D. Valero-Carreras, J. Alcaraz, and M. Landete, Comparing two SVM models through different metrics based on the confusion matrix, vol. 152, no. April 2022. Elsevier Ltd, 2023. doi: 10.1016/j.cor.2022.106131.

P. M. Radiuk, “Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets,” Inf. Technol. Manag. Sci., vol. 20, no. 1, pp. 20–24, 2018, doi: 10.1515/itms-2017-0003.

M. M. Ahsan, K. D. Gupta, M. M. Islam, S. Sen, M. L. Rahman, and M. Shakhawat Hossain, COVID-19 Symptoms Detection Based on NasNetMobile with Explainable AI Using Various Imaging Modalities, vol. 2, no. 4. 2020. doi: 10.3390/make2040027.

S. J. A. Sarosa, F. Utaminingrum, and F. A. Bachtiar, “Breast cancer classification using GLCM and BPNN,” Int. J. Adv. Soft Comput. its Appl., vol. 11, no. 3, pp. 157–172, 2019.

J. Daniel López-Cabrera, L. Alberto López Rodriguez, and M. Pérez-Díaz, “Classification of breast cancer from digital mammography using deep learning,” Intel. Artif., vol. 23, no. 65, pp. 56–66, 2020, doi: 10.4114/intartif.vol23iss65pp56-66.

S. Castro-Tapia et al., “Classification of breast cancer in mammograms with deep learning adding a fifth class,” Appl. Sci., vol. 11, no. 23, 2021, doi: 10.3390/app112311398.



DOI: https://doi.org/10.22146/ijccs.98187

Article Metrics

Abstract views : 1861 | views : 712

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2