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Abstrak 

Pemetaan semantik dan panoptik pada citra kendaraan otonom sangat bergantung 

pada ketersediaan anotasi manual yang memadai. Namun, proses pelabelan manual 

memerlukan waktu dan biaya tinggi, serta rentan terhadap inkonsistensi antar frame. Penelitian 

ini mengusulkan pendekatan otomatis berbasis Neural Radiance Fields(NeRF) untuk 

mentransfer label dari representasi 3D ke citra 2D. Dataset KITTI-360 digunakan dengan 768 

citra yang dianotasi secara semi-otomatis menggunakan segmentor PSPNet dan Mask2Former. 

Model dilatih secara terpisah pada tiga sequence berbeda dan dievaluasi menggunakan metrik 

Intersection over Union (IoU), mean IoU (mIoU), dan Panoptic Quality (PQ). Hasil 

menunjukkan model mampu mencapai mIoU sebesar 0.79 (perspektif) dan 0.73 (fisheye), serta 

PQ sebesar 0.66 dan 0.60. Hasil kualitatif menunjukkan segmentasi yang konsisten pada kelas 

dominan seperti jalan, bangunan, dan langit, serta kemampuan membedakan instance objek 

dengan baik. Pendekatan ini terbukti mampu menghasilkan anotasi berkualitas tinggi tanpa 

ketergantungan pada pelabelan manual. Temuan ini penting untuk mempercepat pembangunan 

sistem persepsi visual kendaraan otonom dan memperluas cakupan data pelatihan secara 

efisien. 

 

Kata kunci—anotasi otomatis, neural radiance field, segmentasi panoptik, kitti-360, kendaraan 

otonom 

 

 

Abstract 

Semantic and panoptic mapping in autonomous vehicle imagery heavily relies on high-

quality manual annotations. However, manual labeling is time-consuming, costly, and prone to 

inconsistency across frames. This study proposes an automated labeling approach based on 

Neural Radiance Fields (NeRF) to transfer labels from 3D representations to 2D images using 

the PanopticNeRF-360 architecture. The KITTI-360 dataset was utilized, with 768 images 

annotated semi-automatically using PSPNet and Mask2Former segmentors. The model was 

trained on three separate sequences and evaluated using Intersection over Union (IoU), mean 

IoU (mIoU), and Panoptic Quality (PQ) metrics. Results show that the model achieved an mIoU 

of 0.79 (perspective) and 0.73 (fisheye), and a PQ of 0.66 and 0.60 respectively. Qualitative 

results indicate consistent segmentation on dominant classes such as roads, buildings, and 

skies, as well as accurate instance separation. This approach proves effective in generating 

high-quality annotations without reliance on manual labeling. The findings are significant for 

accelerating the development of autonomous vehicle perception systems and enabling scalable 

dataset generation. 

 

Keywords—automated annotation, neural radiance field, panoptic segmentation, kitti-360, 

autonomous vehicles 
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1. PENDAHULUAN 
 

Perkembangan teknologi autonomous driving menuntut sistem persepsi visual yang 

mampu mengenali objek, jalan, dan kondisi lingkungan dengan akurasi tinggi. Kualitas sistem 

ini sangat bergantung pada ketersediaan dataset yang lengkap dan akurat. Sayangnya, mayoritas 

proyek vision gagal karena keterbatasan data anotasi manual, baik dari sisi kualitas maupun 

kuantitas [1]. Pengumpulan label manual membutuhkan waktu, biaya, dan keahlian yang tinggi, 

sehingga menjadi kendala utama dalam pengembangan model. 

Beberapa upaya telah dilakukan untuk mengatasi keterbatasan ini, seperti augmentasi 

data [2], penggunaan simulator seperti CARLA [3] dan LGSVL [4], serta metode pembelajaran 

semi-supervised [5]. Namun, pendekatan tersebut memiliki keterbatasan seperti distorsi citra 

akibat augmentasi [17], perbedaan domain simulasi dengan kenyataan, dan kebutuhan akan data 

label tetap menjadi tantangan. Alternatif menjanjikan yang muncul adalah otomatisasi anotasi 

citra menggunakan metode machine learning, termasuk self-supervision [18], kombinasi dengan 

Large-Language Model [20], dan active learning [21]. 

Beberapa penelitian terdahulu yang relevan antara lain TADAP [6], Panoptic Neural 

Fields [7], [16]. Terdapat metode lain seperti transfer label 3D-to-2D berbasis CRF [8], weak-

supervised object localization [19], dan segmentasi dengan kamera RGB-D [15]. Penelitian-

penelitian tersebut menjadi pijakan penting dalam mengembangkan pendekatan anotasi otomatis 

berbasis geometri 3D dan konsistensi spasial. 

Penelitian ini bertujuan untuk mengembangkan metode anotasi otomatis pada citra 

persepsi kendaraan otonom menggunakan pendekatan transfer label dari representasi 3D ke 2D. 

Pendekatan ini mengintegrasikan data bounding box 3D kasar, pseudo-label 2D dari model 

pretrained, serta teknik Neural Radiance Field (NeRF) untuk merepresentasikan scene secara 

spasial. Evaluasi dilakukan menggunakan metrik Intersection over Union (IoU), mean IoU 

(mIoU), dan Panoptic Quality (PQ). 

 

2. METODE PENELITIAN 

2.1 Akuisisi dan Persiapan Data 

Tahapan awal dalam penelitian ini adalah akuisisi dan persiapan data, yang menjadi 

fondasi dari seluruh proses pengembangan model. Dataset yang digunakan adalah KITTI-360, 

sebuah dataset komprehensif yang menyediakan data citra dan sensor untuk lingkungan urban. 

Dataset ini memiliki keunggulan karena menyediakan citra dari kamera stereo (forward-facing) 

dan kamera fisheye dengan cakupan sudut 360°, memungkinkan simulasi kondisi sebenarnya di 

jalanan [10]. Pada gambar 1, dari dataset tersebut, dipilih sebanyak 768 citra, yang terdiri dari 

384 citra perspektif dan 384 citra fisheye. Untuk proses pelatihan, digunakan pseudo ground 

truth yang dibangkitkan menggunakan model segmentasi semantik yaitu PSPNet [11] untuk 

citra perspektif, dan Mask2Former [12] untuk citra fisheye. Sementara itu, sebanyak 60 citra 

dengan anotasi manual digunakan secara khusus untuk tahap evaluasi akhir. Proses ini 

memastikan bahwa data latih dan data uji terpisah dan representatif terhadap variasi lingkungan. 
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Gambar 1. Citra yang diambil dari KITTI-360 

2.2 Arsitektur Model 

Model yang digunakan dalam penelitian ini mengadopsi arsitektur PanopticNeRF-360 

[7], yang memanfaatkan keunggulan representasi NeRF [9] dalam menangkap struktur spasial 

dan semantik dari scene 3D, seperti yang terlihat pada Gambar 2. Model ini dirancang untuk 

menerima input berupa citra RGB, pseudo ground truth 2D, serta bounding primitives 3D yang 

bersifat kasar, seperti kubus atau elipsoid, yang mewakili objek dalam scene. Proses dimulai 

dari ray sampling, yaitu penembakan sinar dari kamera ke scene 3D berdasarkan parameter 

intrinsik dan ekstrinsik kamera. Titik-titik potong antara ray dan objek 3D dihitung melalui 

mesh-ray intersection. Informasi dari titik-titik ini kemudian dimasukkan ke dalam multilayer 

perceptron (MLP), yang menghasilkan output prediksi warna (RGB), kedalaman (depth), label 

semantik, serta ID instance. Hasil akhir berupa segmentasi panoptik memungkinkan sistem 

membedakan antara objek-objek unik (things) serta area luas homogen (stuff), seperti jalan atau 

langit. 

 
 
 

   
Gambar 2. Gambar alur kerja model 

2.3 Konfigurasi Training 

Untuk melatih model agar dapat menghasilkan anotasi yang akurat, dilakukan 

konfigurasi pelatihan yang spesifik dan disesuaikan dengan karakteristik dataset. Pelatihan 

dilakukan secara terpisah pada tiga subset sequence, yang masing-masing mewakili kondisi 

jalanan yang berbeda, seperti daerah pepohonan, kawasan padat bangunan, dan area kombinasi. 

Pada gambar 3, setiap proses pelatihan menggunakan batch size sebesar 1 untuk 

memaksimalkan detail tiap frame, dengan jumlah epoch sebanyak 30, dan learning rate sebesar 

5e-4. Parameter lainnya seperti jumlah ray yang disampling, ukuran chunk, dan kedalaman 

maksimum untuk ray tracing juga diatur sesuai dengan kapasitas perangkat keras dan 

kompleksitas scene. Pendekatan ini memungkinkan model belajar dengan efektif tanpa 

overfitting pada satu jenis lingkungan tertentu. 
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Gambar 3. Gambar alur kerja model 

2.4 Penghitungan Loss 

Selama pelatihan, model mengoptimalkan tiga jenis loss utama yang mewakili tugas-

tugas penting dalam persepsi visual: rekonstruksi warna, estimasi kedalaman, dan segmentasi 

semantik. Pertama, RGB loss dihitung dengan fungsi Mean Squared Error (MSE) antara 

prediksi citra dan citra asli, untuk memastikan hasil render NeRF mendekati tampilan nyata. 

Kedua, depth loss menggunakan fungsi Huber Loss [14], yang memberikan penalti terhadap 

prediksi kedalaman yang meleset namun tetap robust terhadap outlier, dan diterapkan hanya 

pada piksel yang memiliki ground truth depth. Ketiga, semantic loss merupakan gabungan dari 

supervisi 2D dari pseudo ground truth, perbaikan label melalui fix loss, serta konsistensi 

semantik berdasarkan bounding primitives 3D. Ketiga loss ini dikombinasikan dengan bobot 

tertentu yang telah disesuaikan, dan dijumlahkan untuk membentuk total loss yang digunakan 

selama proses training. Strategi ini membantu model memahami hubungan antara informasi 

visual 2D dan struktur spasial 3D secara simultan. 

2.5 Evaluasi 

Untuk menilai performa model, dilakukan evaluasi terhadap citra yang telah dilabeli 

secara manual dari dataset KITTI-360, seperti yang terlihat pada gambar 4. Evaluasi ini 

dilakukan terhadap 60 citra (30 citra perspektif dan 30 citra fisheye) dengan membandingkan 

hasil prediksi model terhadap ground truth menggunakan metrik Intersection over Union (IoU), 

mean IoU (mIoU), dan Panoptic Quality (PQ) [13]. IoU digunakan untuk mengukur seberapa 

baik model mengenali batas objek, mIoU memberikan gambaran rata-rata akurasi segmentasi 

seluruh kelas, dan PQ menggabungkan kualitas segmentasi semantik dan panoptik. Evaluasi 

dilakukan secara terpisah untuk label semantik dan panoptik guna memahami kinerja model 

dalam mengenali jenis objek serta membedakan antar-instance dari objek yang sama. 

 

Gambar 4. Proses evaluasi model 
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3. HASIL DAN PEMBAHASAN 

3.1 Hasil Training 

 

Pada tahapan pelatihan, model diuji pada tiga subset citra berbeda untuk mengukur 

kemampuannya dalam menggeneralisasi scene yang bervariasi. 

 

 

 

 

 

Gambar 5. a) Train Loss pada sequence 1728-1791, b) PSNR pada sequence 1728-1791 

 

 Pada gambar 5a, terdapat train loss dari sequence pertama (1728–1791), yang 

menggambarkan area dengan vegetasi cukup banyak di satu sisi dan deretan rumah di sisi lain, 

memperlihatkan penurunan nilai train loss dari 0.5928 menjadi 0.0730. Kurva penurunan loss 

yang mulus dan konsisten menandakan bahwa model mampu menyesuaikan diri terhadap data 

secara bertahap. Hal ini juga tercermin dalam nilai PSNR (Peak Signal-to-Noise Ratio) pada 

gambar 3.1b yang meningkat dari 7.05 dB menjadi lebih dari 25 dB, menunjukkan peningkatan 

kualitas visual yang signifikan. 

 

Gambar 6. Train Loss pada sequence 1908–1971 

Sementara itu, sequence kedua (1908–1971) pada gambar 6 memperlihatkan lingkungan 

yang lebih padat dan kompleks, dengan lebih banyak kendaraan terparkir serta variasi struktur 

bangunan di kedua sisi jalan. Train loss pada subset ini dimulai dari 0.8797 dan secara bertahap 

turun hingga 0.0706. Meskipun memiliki kompleksitas lebih tinggi, model tetap mampu 

mempertahankan tren penurunan loss yang stabil, membuktikan bahwa arsitektur 

PanopticNeRF-360 cukup fleksibel untuk menangani beragam jenis lingkungan visual. 

 

Gambar 7. Train Loss pada sequence 6398–6461 

Gambar 7 memperlihatkan performa model pada sequence ketiga (6398–6461), citra 

menggambarkan kawasan urban dengan dominasi bangunan dan lebih sedikit vegetasi. Train 

loss awal sebesar 0.5895 menurun hingga mencapai 0.1223. Meskipun nilai akhir sedikit lebih 

tinggi dibanding dua sequence sebelumnya, hal ini masih dalam kategori baik, mengingat jenis 

objek yang lebih kompleks dan batas objek yang tidak terlalu kontras. Performa ini menandakan 

bahwa model memerlukan perhatian lebih pada segmentasi objek kecil atau saling berhimpitan. 
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3.2 Evaluasi Semantic Label 

Visualisasi pada gambar 8 menunjukkan hasil prediksi model pada citra perspektif. Dari 

kolom Hasil, terlihat bahwa model berhasil mengidentifikasi area utama dengan cukup akurat, 

seperti jalan (road), langit (sky), bangunan (building), dan kendaraan (car). Pola warna pada 

prediksi sangat menyerupai ground truth manual (kolom ketiga), menandakan bahwa 

representasi semantik berhasil dipelajari dengan baik oleh model. 

 

Gambar 8. Hasil Kualitatif Label Semantik pada Citra Forward-facing 

 Prediksi model pada kelas jalan konsisten mengikuti geometri jalan, bahkan pada 

bagian yang menyempit atau melengkung. Langit diidentifikasi secara utuh meskipun terpotong 

oleh dedaunan, dan bangunan dapat dikenali meski berada dalam kondisi pencahayaan berbeda. 

Model juga mampu mengatasi noise dari pseudo GT 2D (kolom kedua), di mana PSPNet 

menunjukkan kontur yang lebih kasar atau salah label, namun berhasil dikoreksi oleh prediksi 

akhir. Namun, masih terdapat sedikit kesalahan prediksi pada kelas seperti pagar (fence) dan 

box, yang kadang tercampur dengan bangunan atau tanah. Hal ini umum terjadi ketika objek 

memiliki ukuran kecil atau tepi yang tidak jelas. Secara keseluruhan, hasil semantik pada citra 

perspektif menunjukkan bahwa model dapat melakukan generalisasi visual dengan baik 

terhadap scene urban kompleks. 

 Pada gambar 9 yang menunjukkan visualisasi hasil model untuk citra fisheye, model 

juga menunjukkan kemampuan yang cukup baik dalam mengenali area luas seperti jalan, langit, 

dan bangunan. Bentuk prediksi yang lebih membulat mengikuti bentuk circular projection dari 

kamera menunjukkan bahwa model mampu mengadaptasi pada geometri distorsi khas fisheye. 
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Gambar 9. Hasil Kualitatif Label Semantik pada Citra Fisheye 

 Prediksi jalan dan langit tampak sangat konsisten pada seluruh baris. Ini penting karena 

fisheye kerap mengalami distorsi ekstrem di bagian tepi, namun model tetap dapat 

mempertahankan segmentasi yang utuh. Mobil-mobil yang berada di sisi kiri dan kanan citra 

juga berhasil dipisahkan dari latar, menunjukkan bahwa representasi 3D berhasil membantu 

membedakan elevasi dan kontur objek. Perbandingan dengan pseudo GT dari Mask2Former 

(kolom kedua) memperlihatkan bahwa model berhasil menghilangkan noise serta memperhalus 

batas objek, misalnya pada semak-semak dan kontur rumah. Namun, kesalahan kecil masih 

terlihat pada area bayangan atau objek tumpang tindih, di mana model kadang menyatukan dua 

kelas menjadi satu. Secara umum, performa model pada citra fisheye sangat kompeten meski 

terdapat tantangan dari distorsi lensa, dengan peningkatan kualitas visual dan semantik 

dibanding pseudo GT. 

 Evaluasi terhadap hasil segmentasi semantik dilakukan dengan membandingkan label 

prediksi model dengan label ground truth menggunakan metrik IoU dan mIoU, seperti yang 

terlihat pada tabel 1. 

Tabel 1 Hasil Kuantitatif dari Label Semantik 

Forward-facing 

IoU 
mIoU Acc 

Road Park Sdwlk Terr Bldg Vegt 

0.96 0.79 0.85 0.65 0.94 0.88 
0.79 0.86 

Car Gate Wall Fence Box Sky 
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0.93 0.72 0.66 0.74 0.65 0.91 

Fisheye 

IoU 
mIoU Acc 

Road Park Sdwlk Terr Bldg Vegt 

0.96 0.63 0.88 0.56 0.91 0.6 

0.73 0.77 Car Gate Wall Fence Box Sky 

0.91 0.77 0.49 0.69 0.54 0.96 

 

Untuk citra perspektif, model mencapai mIoU sebesar 0.79, sedangkan untuk citra 

fisheye mencapai 0.73. Kelas dengan skor tertinggi di antaranya adalah road (0.96), building 

(0.94), car (0.93), dan sky (0.91), yang merupakan kelas dominan dalam scene urban. 

Sebaliknya, kelas seperti fence, box, dan gate memperoleh nilai IoU lebih rendah, yakni di 

bawah 0.70, menunjukkan tantangan dalam membedakan batas objek yang kecil atau terletak di 

tepi gambar. Citra fisheye cenderung memiliki distorsi pada bagian pinggir, yang menurunkan 

ketepatan prediksi pada area tersebut. Namun demikian, hasil ini tetap menunjukkan bahwa 

model cukup andal dalam memahami struktur utama scene dari berbagai sudut pandang. 

3.3 Evaluasi Panoptic Label 

Visualisasi pada gambar 10 menunjukkan hasil label panoptik pada kamera perspektif, 

memperlihatkan kemampuan model dalam mengenali dan membedakan objek berdasarkan kelas 

dan instance. Pada kolom “Hasil”, terlihat bahwa setiap mobil, bangunan, atau pagar yang unik 

berhasil diberi warna berbeda, menandakan pemisahan antar instance dalam satu kelas berhasil 

dilakukan. 

 

 

Gambar 10. Hasil Kualitatif Label Semantik pada Citra Forward-facing 

 Objek seperti mobil yang berada berdekatan di sepanjang sisi jalan tersegmentasi secara 

individual tanpa tumpang tindih. Hal ini menunjukkan bahwa proses instance segmentation 
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bekerja dengan cukup baik pada objek berukuran sedang hingga besar. Pada kelas stuff seperti 

jalan, langit, dan bangunan, hasil segmentasi juga terlihat utuh dan konsisten. Namun, terdapat 

beberapa tantangan yang masih muncul. Misalnya, pada objek kecil seperti pagar atau tanaman 

hias, model kadang gagal membedakan instance yang bersebelahan, atau malah 

menggabungkannya sebagai satu entitas. Di sisi lain, warna yang berbeda untuk setiap mobil 

menandakan keberhasilan model dalam membedakan mobil yang sejenis tapi berbeda identitas, 

yang sangat penting untuk konteks navigasi kendaraan otonom. Secara keseluruhan, hasil 

panoptik pada kamera perspektif menunjukkan bahwa pendekatan 3D-to-2D ini efektif dalam 

memahami struktur dan keberadaan objek secara detail dari satu arah pandang tetap. 

Hasil panoptik untuk kamera fisheye pada gambar 11 menunjukkan kemampuan serupa 

dalam segmentasi instance, meskipun dengan tantangan tambahan berupa distorsi tepi akibat 

sudut pandang 360°. Dalam beberapa baris citra, terlihat bahwa beberapa kendaraan yang 

berada dekat lensa berhasil dipisahkan dengan baik dan diberi warna berbeda. Hal ini 

mencerminkan keberhasilan model dalam mengadaptasi input dari kamera non-konvensional.

  

 

Gambar 11. Hasil Kualitatif Label Semantik pada Citra Forward-facing 

Area jalan dan langit tetap dikenali dengan sangat baik, dengan segmentasi stuff yang halus dan 

tidak terputus. Model juga mampu menghindari kesalahan pseudo GT, terutama pada bagian 

bawah citra yang sering kali mengalami clipping atau noise dari kendaraan atau bumper kamera. 

Kesalahan masih muncul pada bagian pinggir citra, di mana objek seperti pohon atau pagar 

terkadang tidak dipisahkan sempurna antar instance-nya, bahkan tidak dikenali sebagai objek 

terpisah. Walaupun demikian, secara umum instance segmentation tetap berhasil pada mayoritas 

objek things yang terlihat utuh dan cukup besar. Model tampaknya belajar dari konsistensi 

spasial 3D dan menghasilkan prediksi panoptik yang tidak hanya tajam secara semantik, tetapi 

juga tersegmentasi secara individual, bahkan dalam citra dengan sudut ekstrim. 

Untuk mengevaluasi kemampuan model dalam menghasilkan label panoptik, digunakan 

metrik Panoptic Quality (PQ), yang menggabungkan kualitas segmentasi semantik dan 

identifikasi instance objek, seperti yang terlihat pada tabel 2. Nilai PQ keseluruhan untuk citra 

perspektif mencapai 0.66, sementara untuk citra fisheye sebesar 0.60. Secara umum, PQ-stuff 

(untuk objek homogen seperti jalan dan langit) memiliki nilai yang lebih tinggi dibandingkan 

PQ-things (untuk objek individual seperti mobil, pagar, dan box). Hasil ini menunjukkan bahwa 

model memiliki kecenderungan lebih kuat dalam mengenali area luas dengan label tunggal 

dibanding membedakan objek-objek kecil yang berdekatan.  
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Tabel 2 Hasil Kuantitatif dari Label Panoptik 

 
 

 

 

Mes

kipu

n 

hasil 

eval

uasi 

men

unju

kkan 

perf

orma 

yang 

menj

anjik

an, 

masi

h 

terda

pat beberapa jenis kesalahan yang perlu diperhatikan. Salah satu kesalahan yang paling umum 

adalah over-segmentation pada objek kecil seperti box atau pagar, terutama jika objek tersebut 

berada di pinggir citra fisheye yang mengalami distorsi optik. Selain itu, model juga cenderung 

menggabungkan dua instance berbeda menjadi satu (under-segmentation), khususnya jika 

objek-objek tersebut saling berdekatan atau memiliki warna serta tekstur serupa. 

 

4. KESIMPULAN 

 

Kesimpulan yang dapat ditarik dari penelitian ini adalah model dapat melakukan anotasi 

pada citra persepsi berupa forward-facing dan fisheye dengan baik, dengan melihat nilai mean 

intersection unit dan panoptic quality yang di atas 0.5. Selain itu, model dapat menangkap detail 

objek dari citra yang underexposed (minim cahaya) maupun citra yang overexposed (terlalu 

banyak cahaya) dengan baik. 
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