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Abstrak

Pemetaan semantik dan panoptik pada citra kendaraan otonom sangat bergantung
pada ketersediaan anotasi manual yang memadai. Namun, proses pelabelan manual
memerlukan waktu dan biaya tinggi, serta rentan terhadap inkonsistensi antar frame. Penelitian
ini mengusulkan pendekatan otomatis berbasis Neural Radiance Fields(NeRF) untuk
mentransfer label dari representasi 3D ke citra 2D. Dataset KITTI-360 digunakan dengan 768
citra yang dianotasi secara semi-otomatis menggunakan segmentor PSPNet dan Mask2Former.
Model dilatih secara terpisah pada tiga sequence berbeda dan dievaluasi menggunakan metrik
Intersection over Union (loU), mean loU (mloU), dan Panoptic Quality (PQ). Hasil
menunjukkan model mampu mencapai mloU sebesar 0.79 (perspektif) dan 0.73 (fisheye), serta
PQ sebesar 0.66 dan 0.60. Hasil kualitatif menunjukkan segmentasi yang konsisten pada kelas
dominan seperti jalan, bangunan, dan langit, serta kemampuan membedakan instance objek
dengan baik. Pendekatan ini terbukti mampu menghasilkan anotasi berkualitas tinggi tanpa
ketergantungan pada pelabelan manual. Temuan ini penting untuk mempercepat pembangunan
sistem persepsi visual kendaraan otonom dan memperluas cakupan data pelatihan secara
efisien.

Kata kunci—anotasi otomatis, neural radiance field, segmentasi panoptik, kitti-360, kendaraan
otonom

Abstract

Semantic and panoptic mapping in autonomous vehicle imagery heavily relies on high-
quality manual annotations. However, manual labeling is time-consuming, costly, and prone to
inconsistency across frames. This study proposes an automated labeling approach based on
Neural Radiance Fields (NeRF) to transfer labels from 3D representations to 2D images using
the PanopticNeRF-360 architecture. The KITTI-360 dataset was utilized, with 768 images
annotated semi-automatically using PSPNet and Mask2Former segmentors. The model was
trained on three separate sequences and evaluated using Intersection over Union (loU), mean
IloU (mloU), and Panoptic Quality (PQ) metrics. Results show that the model achieved an mloU
of 0.79 (perspective) and 0.73 (fisheye), and a PQ of 0.66 and 0.60 respectively. Qualitative
results indicate consistent segmentation on dominant classes such as roads, buildings, and
skies, as well as accurate instance separation. This approach proves effective in generating
high-quality annotations without reliance on manual labeling. The findings are significant for
accelerating the development of autonomous vehicle perception systems and enabling scalable
dataset generation.

Keywords—automated annotation, neural radiance field, panoptic segmentation, kitti-360),
autonomous vehicles
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1. PENDAHULUAN

Perkembangan teknologi autonomous driving menuntut sistem persepsi visual yang
mampu mengenali objek, jalan, dan kondisi lingkungan dengan akurasi tinggi. Kualitas sistem
ini sangat bergantung pada ketersediaan dataset yang lengkap dan akurat. Sayangnya, mayoritas
proyek vision gagal karena keterbatasan data anotasi manual, baik dari sisi kualitas maupun
kuantitas [1]. Pengumpulan label manual membutuhkan waktu, biaya, dan keahlian yang tinggi,
sehingga menjadi kendala utama dalam pengembangan model.

Beberapa upaya telah dilakukan untuk mengatasi keterbatasan ini, seperti augmentasi
data [2], penggunaan simulator seperti CARLA [3] dan LGSVL [4], serta metode pembelajaran
semi-supervised [5]. Namun, pendekatan tersebut memiliki keterbatasan seperti distorsi citra
akibat augmentasi [17], perbedaan domain simulasi dengan kenyataan, dan kebutuhan akan data
label tetap menjadi tantangan. Alternatif menjanjikan yang muncul adalah otomatisasi anotasi
citra menggunakan metode machine learning, termasuk self-supervision [18], kombinasi dengan
Large-Language Model [20], dan active learning [21].

Beberapa penelitian terdahulu yang relevan antara lain TADAP [6], Panoptic Neural
Fields [7], [16]. Terdapat metode lain seperti transfer label 3D-to-2D berbasis CRF [8], weak-
supervised object localization [19], dan segmentasi dengan kamera RGB-D [15]. Penelitian-
penelitian tersebut menjadi pijakan penting dalam mengembangkan pendekatan anotasi otomatis
berbasis geometri 3D dan konsistensi spasial.

Penelitian ini bertujuan untuk mengembangkan metode anotasi otomatis pada citra
persepsi kendaraan otonom menggunakan pendekatan transfer label dari representasi 3D ke 2D.
Pendekatan ini mengintegrasikan data bounding box 3D kasar, pseudo-label 2D dari model
pretrained, serta teknik Neural Radiance Field (NeRF) untuk merepresentasikan scene secara
spasial. Evaluasi dilakukan menggunakan metrik Intersection over Union (1oU), mean loU
(mloU), dan Panoptic Quality (PQ).

2. METODE PENELITIAN

2.1 Akuisisi dan Persiapan Data

Tahapan awal dalam penelitian ini adalah akuisisi dan persiapan data, yang menjadi
fondasi dari seluruh proses pengembangan model. Dataset yang digunakan adalah KITTI-360,
sebuah dataset komprehensif yang menyediakan data citra dan sensor untuk lingkungan urban.
Dataset ini memiliki keunggulan karena menyediakan citra dari kamera stereo (forward-facing)
dan kamera fisheye dengan cakupan sudut 360°, memungkinkan simulasi kondisi sebenarnya di
jalanan [10]. Pada gambar 1, dari dataset tersebut, dipilih sebanyak 768 citra, yang terdiri dari
384 citra perspektif dan 384 citra fisheye. Untuk proses pelatihan, digunakan pseudo ground
truth yang dibangkitkan menggunakan model segmentasi semantik yaitu PSPNet [11] untuk
citra perspektif, dan Mask2Former [12] untuk citra fisheye. Sementara itu, sebanyak 60 citra
dengan anotasi manual digunakan secara khusus untuk tahap evaluasi akhir. Proses ini
memastikan bahwa data latih dan data uji terpisah dan representatif terhadap variasi lingkungan.
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Gambear 1. Citra yang diambil dari KITTI-360

2.2 Arsitektur Model

Model yang digunakan dalam penelitian ini mengadopsi arsitektur PanopticNeRF-360
[7], yang memanfaatkan keunggulan representasi NeRF [9] dalam menangkap struktur spasial
dan semantik dari scene 3D, seperti yang terlihat pada Gambar 2. Model ini dirancang untuk
menerima input berupa citra RGB, pseudo ground truth 2D, serta bounding primitives 3D yang
bersifat kasar, seperti kubus atau elipsoid, yang mewakili objek dalam scene. Proses dimulai
dari ray sampling, yaitu penembakan sinar dari kamera ke scene 3D berdasarkan parameter
intrinsik dan ekstrinsik kamera. Titik-titik potong antara ray dan objek 3D dihitung melalui
mesh-ray intersection. Informasi dari titik-titik ini kemudian dimasukkan ke dalam multilayer
perceptron (MLP), yang menghasilkan output prediksi warna (RGB), kedalaman (depth), label
semantik, serta ID instance. Hasil akhir berupa segmentasi panoptik memungkinkan sistem
membedakan antara objek-objek unik (things) serta area luas homogen (stuff), seperti jalan atau
langit.
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Gambar 2. Gambar alur kerja model

2.3 Konfigurasi Training

Untuk melatih model agar dapat menghasilkan anotasi yang akurat, dilakukan
konfigurasi pelatihan yang spesifik dan disesuaikan dengan karakteristik dataset. Pelatihan
dilakukan secara terpisah pada tiga subset sequence, yang masing-masing mewakili kondisi
jalanan yang berbeda, seperti daerah pepohonan, kawasan padat bangunan, dan area kombinasi.
Pada gambar 3, setiap proses pelatihan menggunakan batch size sebesar 1 untuk
memaksimalkan detail tiap frame, dengan jumlah epoch sebanyak 30, dan learning rate sebesar
S5e-4. Parameter lainnya seperti jumlah ray yang disampling, ukuran chunk, dan kedalaman
maksimum untuk ray tracing juga diatur sesuai dengan kapasitas perangkat keras dan
kompleksitas scene. Pendekatan ini memungkinkan model belajar dengan efektif tanpa
overfitting pada satu jenis lingkungan tertentu.




Gambar 3. Gambar alur kerja model

2.4 Penghitungan Loss

Selama pelatihan, model mengoptimalkan tiga jenis loss utama yang mewakili tugas-
tugas penting dalam persepsi visual: rekonstruksi warna, estimasi kedalaman, dan segmentasi
semantik. Pertama, RGB loss dihitung dengan fungsi Mean Squared Error (MSE) antara
prediksi citra dan citra asli, untuk memastikan hasil render NeRF mendekati tampilan nyata.
Kedua, depth loss menggunakan fungsi Huber Loss [14], yang memberikan penalti terhadap
prediksi kedalaman yang meleset namun tetap robust terhadap outlier, dan diterapkan hanya
pada piksel yang memiliki ground truth depth. Ketiga, semantic loss merupakan gabungan dari
supervisi 2D dari pseudo ground truth, perbaikan label melalui fix loss, serta konsistensi
semantik berdasarkan bounding primitives 3D. Ketiga loss ini dikombinasikan dengan bobot
tertentu yang telah disesuaikan, dan dijumlahkan untuk membentuk total loss yang digunakan
selama proses training. Strategi ini membantu model memahami hubungan antara informasi
visual 2D dan struktur spasial 3D secara simultan.

2.5 Evaluasi

Untuk menilai performa model, dilakukan evaluasi terhadap citra yang telah dilabeli
secara manual dari dataset KITTI-360, seperti yang terlihat pada gambar 4. Evaluasi ini
dilakukan terhadap 60 citra (30 citra perspektif dan 30 citra fisheye) dengan membandingkan
hasil prediksi model terhadap ground truth menggunakan metrik Intersection over Union (IoU),
mean loU (mloU), dan Panoptic Quality (PQ) [13]. IoU digunakan untuk mengukur seberapa
baik model mengenali batas objek, mloU memberikan gambaran rata-rata akurasi segmentasi
seluruh kelas, dan PQ menggabungkan kualitas segmentasi semantik dan panoptik. Evaluasi
dilakukan secara terpisah untuk label semantik dan panoptik guna memahami kinerja model

Gambar 4. Proses evaluasi model




3. HASIL DAN PEMBAHASAN

3.1 Hasil Training

Pada tahapan pelatihan, model diuji pada tiga subset citra berbeda untuk mengukur
kemampuannya dalam menggeneralisasi scene yang bervariasi.

Gambear 5. a) Train Loss pada sequence 1728-1791, b) PSNR pada sequence 1728-1791

Pada gambar 5a, terdapat train loss dari sequence pertama (1728-1791), yang
menggambarkan area dengan vegetasi cukup banyak di satu sisi dan deretan rumah di sisi lain,
memperlihatkan penurunan nilai train loss dari 0.5928 menjadi 0.0730. Kurva penurunan loss
yang mulus dan konsisten menandakan bahwa model mampu menyesuaikan diri terhadap data
secara bertahap. Hal ini juga tercermin dalam nilai PSNR (Peak Signal-to-Noise Ratio) pada
gambar 3.1b yang meningkat dari 7.05 dB menjadi lebih dari 25 dB, menunjukkan peningkatan
kualitas visual yang signifikan.

Training Curve: trainfloss

Gambar 6. Train Loss pada sequence 1908—1971
Sementara itu, sequence kedua (1908—1971) pada gambar 6 memperlihatkan lingkungan
yang lebih padat dan kompleks, dengan lebih banyak kendaraan terparkir serta variasi struktur
bangunan di kedua sisi jalan. Train loss pada subset ini dimulai dari 0.8797 dan secara bertahap
turun hingga 0.0706. Meskipun memiliki kompleksitas lebih tinggi, model tetap mampu
mempertahankan tren penurunan loss yang stabil, membuktikan bahwa arsitektur
PanopticNeRF-360 cukup fleksibel untuk menangani beragam jenis lingkungan visual.
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Gambar 7. Train Loss pada sequence 6398—6461
Gambar 7 memperlihatkan performa model pada sequence ketiga (6398—6461), citra
menggambarkan kawasan urban dengan dominasi bangunan dan lebih sedikit vegetasi. Train
loss awal sebesar 0.5895 menurun hingga mencapai 0.1223. Meskipun nilai akhir sedikit lebih
tinggi dibanding dua sequence sebelumnya, hal ini masih dalam kategori baik, mengingat jenis
objek yang lebih kompleks dan batas objek yang tidak terlalu kontras. Performa ini menandakan
bahwa model memerlukan perhatian lebih pada segmentasi objek kecil atau saling berhimpitan.




3.2 Evaluasi Semantic Label

Visualisasi pada gambar 8 menunjukkan hasil prediksi model pada citra perspektif. Dari
kolom Hasil, terlihat bahwa model berhasil mengidentifikasi area utama dengan cukup akurat,
seperti jalan (road), langit (sky), bangunan (building), dan kendaraan (car). Pola warna pada
prediksi sangat menyerupai ground truth manual (kolom ketiga), menandakan bahwa
representasi semantik berhasil dipelajari dengan baik oleh model.

Citra B Pseudo GT 2D (PSPNet) Ground Truth Hasil

Gambar 8. Hasil Kualitatif Label Semantik pada Citra Forward-facing

Prediksi model pada kelas jalan konsisten mengikuti geometri jalan, bahkan pada
bagian yang menyempit atau melengkung. Langit diidentifikasi secara utuh meskipun terpotong
oleh dedaunan, dan bangunan dapat dikenali meski berada dalam kondisi pencahayaan berbeda.
Model juga mampu mengatasi noise dari pseudo GT 2D (kolom kedua), di mana PSPNet
menunjukkan kontur yang lebih kasar atau salah label, namun berhasil dikoreksi oleh prediksi
akhir. Namun, masih terdapat sedikit kesalahan prediksi pada kelas seperti pagar (fence) dan
box, yang kadang tercampur dengan bangunan atau tanah. Hal ini umum terjadi ketika objek
memiliki ukuran kecil atau tepi yang tidak jelas. Secara keseluruhan, hasil semantik pada citra
perspektif menunjukkan bahwa model dapat melakukan generalisasi visual dengan baik
terhadap scene urban kompleks.

Pada gambar 9 yang menunjukkan visualisasi hasil model untuk citra fisheye, model
juga menunjukkan kemampuan yang cukup baik dalam mengenali area luas seperti jalan, langit,
dan bangunan. Bentuk prediksi yang lebih membulat mengikuti bentuk circular projection dari
kamera menunjukkan bahwa model mampu mengadaptasi pada geometri distorsi khas fisheye.
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Gambar 9. Hasil Kualitatif Label Semantik pada Citra Fisheye

Prediksi jalan dan langit tampak sangat konsisten pada seluruh baris. Ini penting karena
fisheye kerap mengalami distorsi ekstrem di bagian tepi, namun model tetap dapat
mempertahankan segmentasi yang utuh. Mobil-mobil yang berada di sisi kiri dan kanan citra
juga berhasil dipisahkan dari latar, menunjukkan bahwa representasi 3D berhasil membantu
membedakan elevasi dan kontur objek. Perbandingan dengan pseudo GT dari Mask2Former
(kolom kedua) memperlihatkan bahwa model berhasil menghilangkan noise serta memperhalus
batas objek, misalnya pada semak-semak dan kontur rumah. Namun, kesalahan kecil masih
terlihat pada area bayangan atau objek tumpang tindih, di mana model kadang menyatukan dua
kelas menjadi satu. Secara umum, performa model pada citra fisheye sangat kompeten meski
terdapat tantangan dari distorsi lensa, dengan peningkatan kualitas visual dan semantik
dibanding pseudo GT.

Evaluasi terhadap hasil segmentasi semantik dilakukan dengan membandingkan label
prediksi model dengan label ground truth menggunakan metrik IoU dan mloU, seperti yang
terlihat pada tabel 1.

Tabel 1 Hasil Kuantitatif dari Label Semantik

Forward-facing
IoU
mloU Acc
Road Park Sdwlk Terr Bldg Vegt
0.96 0.79 0.85 0.65 0.94 0.88
0.79 0.86
Car Gate Wall Fence Box Sky




0.93 ‘ 0.72 ‘ 0.66 ‘ 0.74 0.65 ‘ 0.91
Fisheye
IoU
mloU Acc
Road Park Sdwlk Terr Bldg Vegt
0.96 0.63 0.88 0.56 0.91 0.6
Car Gate Wall Fence Box Sky 0.73 0.77
0.91 0.77 0.49 0.69 0.54 0.96

Untuk citra perspektif, model mencapai mloU sebesar 0.79, sedangkan untuk citra
fisheye mencapai 0.73. Kelas dengan skor tertinggi di antaranya adalah road (0.96), building
(0.94), car (0.93), dan sky (0.91), yang merupakan kelas dominan dalam scene urban.
Sebaliknya, kelas seperti fence, box, dan gate memperoleh nilai IoU lebih rendah, yakni di
bawah 0.70, menunjukkan tantangan dalam membedakan batas objek yang kecil atau terletak di
tepi gambar. Citra fisheye cenderung memiliki distorsi pada bagian pinggir, yang menurunkan
ketepatan prediksi pada area tersebut. Namun demikian, hasil ini tetap menunjukkan bahwa
model cukup andal dalam memahami struktur utama scene dari berbagai sudut pandang.

3.3 Evaluasi Panoptic Label

Visualisasi pada gambar 10 menunjukkan hasil label panoptik pada kamera perspektif,
memperlihatkan kemampuan model dalam mengenali dan membedakan objek berdasarkan kelas
dan instance. Pada kolom “Hasil”, terlihat bahwa setiap mobil, bangunan, atau pagar yang unik
berhasil diberi warna berbeda, menandakan pemisahan antar instance dalam satu kelas berhasil
dilakukan.

Ground Truth

Gambar 10. Hasil Kualitatif Label Semantik pada Citra Forward-facing

Objek seperti mobil yang berada berdekatan di sepanjang sisi jalan tersegmentasi secara
individual tanpa tumpang tindih. Hal ini menunjukkan bahwa proses instance segmentation




bekerja dengan cukup baik pada objek berukuran sedang hingga besar. Pada kelas stuff seperti
jalan, langit, dan bangunan, hasil segmentasi juga terlihat utuh dan konsisten. Namun, terdapat
beberapa tantangan yang masih muncul. Misalnya, pada objek kecil seperti pagar atau tanaman
hias, model kadang gagal membedakan instance yang Dbersebelahan, atau malah
menggabungkannya sebagai satu entitas. Di sisi lain, warna yang berbeda untuk setiap mobil
menandakan keberhasilan model dalam membedakan mobil yang sejenis tapi berbeda identitas,
yang sangat penting untuk konteks navigasi kendaraan otonom. Secara keseluruhan, hasil
panoptik pada kamera perspektif menunjukkan bahwa pendekatan 3D-to-2D ini efektif dalam
memahami struktur dan keberadaan objek secara detail dari satu arah pandang tetap.

Hasil panoptik untuk kamera fisheye pada gambar 11 menunjukkan kemampuan serupa
dalam segmentasi instance, meskipun dengan tantangan tambahan berupa distorsi tepi akibat
sudut pandang 360°. Dalam beberapa baris citra, terlihat bahwa beberapa kendaraan yang
berada dekat lensa berhasil dipisahkan dengan baik dan diberi warna berbeda. Hal ini
mencerminkan keberhasilan model dalam mengadaptasi input dari kamera non-konvensional.

Ground Truth

Gambar 11. Hasil Kualitatif Label Semantik pada Citra Forward-facing

Area jalan dan langit tetap dikenali dengan sangat baik, dengan segmentasi stuff yang halus dan
tidak terputus. Model juga mampu menghindari kesalahan pseudo GT, terutama pada bagian
bawabh citra yang sering kali mengalami clipping atau noise dari kendaraan atau bumper kamera.
Kesalahan masih muncul pada bagian pinggir citra, di mana objek seperti pohon atau pagar
terkadang tidak dipisahkan sempurna antar instance-nya, bahkan tidak dikenali sebagai objek
terpisah. Walaupun demikian, secara umum instance segmentation tetap berhasil pada mayoritas
objek things yang terlihat utuh dan cukup besar. Model tampaknya belajar dari konsistensi
spasial 3D dan menghasilkan prediksi panoptik yang tidak hanya tajam secara semantik, tetapi
juga tersegmentasi secara individual, bahkan dalam citra dengan sudut ekstrim.

Untuk mengevaluasi kemampuan model dalam menghasilkan label panoptik, digunakan
metrik Panoptic Quality (PQ), yang menggabungkan kualitas segmentasi semantik dan
identifikasi instance objek, seperti yang terlihat pada tabel 2. Nilai PQ keseluruhan untuk citra
perspektif mencapai 0.66, sementara untuk citra fisheye sebesar 0.60. Secara umum, PQ-stuff
(untuk objek homogen seperti jalan dan langit) memiliki nilai yang lebih tinggi dibandingkan
PQ-things (untuk objek individual seperti mobil, pagar, dan box). Hasil ini menunjukkan bahwa
model memiliki kecenderungan lebih kuat dalam mengenali area luas dengan label tunggal
dibanding membedakan objek-objek kecil yang berdekatan.
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Tabel 2 Hasil Kuantitatif dari Label Panoptik

Forward-facing
PQ

PQ Mes
Road Park | Sdwlk | Terr Bldg Vegt | PQ All | things |PQ stuff| kipu
n
0.96 0.58 0.83 0.5 0.62 0.87 hasil
Car Gate Wall | Fence Box Sky evall
uasi
0.71 0.6 0.57 0.56 0.27 0.9 0.66 0.71 0.77 men
unju
Fisheye kkan
perf
PQ PQ orma
Road | Park | Sdwlk | Terr | Bldg | Vegt | PQAll | things |PQ stuff| Y318
menj
0.93 0.46 0.86 0.25 0.71 0.78 anjik
an,
Car Gate Wall | Fence Box Sky masi
h
0.49 0.54 0.27 0.41 0.57 0.94 0.6 0.56 0.71 terda

pat beberapa jenis kesalahan yang perlu diperhatikan. Salah satu kesalahan yang paling umum
adalah over-segmentation pada objek kecil seperti box atau pagar, terutama jika objek tersebut
berada di pinggir citra fisheye yang mengalami distorsi optik. Selain itu, model juga cenderung
menggabungkan dua instance berbeda menjadi satu (under-segmentation), khususnya jika
objek-objek tersebut saling berdekatan atau memiliki warna serta tekstur serupa.

4. KESIMPULAN

Kesimpulan yang dapat ditarik dari penelitian ini adalah model dapat melakukan anotasi
pada citra persepsi berupa forward-facing dan fisheye dengan baik, dengan melihat nilai mean
intersection unit dan panoptic quality yang di atas 0.5. Selain itu, model dapat menangkap detail
objek dari citra yang underexposed (minim cahaya) maupun citra yang overexposed (terlalu
banyak cahaya) dengan baik.
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