Indonesian Journal of Electronics and Instrumentation Systems (IJEIS)

Vol.14, No.2, October 2024, pp. 209~220

ISSN (print): 2088-3714, ISSN (online): 2460-7681

DOI: https://doi.org/10.22146/ijeis. 99255 m 209

Ethereum Blockchain-Based Weather Data Storage
Prototype

Eris Sulistiyani*', Bambang Nurcahyo Prastowo?
12Gadjah Mada University; Bulaksumur, Caturtunggal, Depok, Sleman Regency, Special
Region of Yogyakarta
I.2Electronics and Instrumentation, Faculty of Mathematics and Natural Sciences, UGM,
Yogyakarta
e-mail: *'erissulis05@gmail.com, *prastowo@ugm.ac.id

Abstract

The application of Ethereum Blockchain within loT-based weather monitoring systems
presents substantial potential for enhancing data security, integrity, transparency, and trust. This
study is focused on the design, implementation, and evaluation of Ethereum Blockchain as a
robust data security mechanism in an loT weather monitoring system. The system is configured
to monitor environmental parameters, specifically temperature and humidity, using DHT22
sensors, with data securely stored and processed through smart contracts on a locally deployed
Ethereum network. The research utilizes the Proof of Authority consensus mechanism, assessing
data transmission and storage latency across varying mining intervals. The findings reveal
minimal transmission delays, whereas storage delays on the blockchain exhibit variability,
influenced by the duration of the mining period. Specifically, longer mining intervals contribute
to increased delays in data storage. These results underscore the necessity of optimizing the
mining interval to ensure complete and synchronized data storage, thereby emhancing the
accuracy and reliability of the weather monitoring system. This study demonstrates the efficacy
of Ethereum Blockchain in addressing critical challenges related to data security and integrity
within loT applications, highlighting its potential as a promising solution for secure data
management.

Keywords— Etehereum, Proof of Authority (PoA), IoT, latency

I. INTRODUCTION

The Internet of Things (IoT) enables various sensors, actuators, and microcontrollers to
connect and communicate online through the internet. loT represents a network of interconnected
devices that collect and exchange data regarding usage patterns and the environment in which
these devices operate [1]. The deployment of IoT has significantly contributed to technological
advancements by facilitating real-time data acquisition for more efficient analysis. IoT
applications span a wide range of fields, including agriculture, energy, environmental monitoring,
smart homes, healthcare, and transportation. Among these applications, weather monitoring is a
key area where 10T is utilized to gather meteorological information and provide weather forecasts
for specific regions [2].

Accurate environmental assessment necessitates the monitoring of various weather
parameters, such as air temperature, atmospheric pressure, humidity, and precipitation [3]. IoT
devices equipped with sensors are employed to collect data on these weather parameters, which

Received August 19" 2024, Revised October 30", 2024, Accepted October 31™, 2024

mailto:2prastowo@ugm.ac.id

210 u ISSN (print): 2088-3714, ISSN (online): 2460-7681

is then transmitted to a central database server. However, the transmission and storage of [oT data
require robust security and privacy measures, including data integrity, confidentiality, and
authentication. Many IoT devices and applications are not originally designed to address these
security and privacy concerns, highlighting the need for efficient data transmission and storage
mechanisms to safeguard connected devices from hackers and intruders.

Addressing security challenges in IoT systems necessitates careful consideration of
hardware that can securely run an operating system, including loading trusted firmware onto smart
devices to establish secure communication channels with backend systems. The security of
information obtained from IoT devices can be ensured through the implementation of hash
algorithms, cryptography, and digital signatures, which provide confidentiality, authentication,
and data integrity [4].

Blockchain technology has emerged as a promising solution due to its transparency,
immutability, security, and decentralization [5]. Decentralization offers an effective approach for
managing the growing complexity of networks, which often require expensive and insecure
information and communication infrastructure. Blockchain enables dynamic integration and
management of network components [6]. In recent years, blockchain has been increasingly
applied in IoT systems to provide a decentralized and secure method for storing and processing
data, facilitating data exchange among interconnected IoT devices.

Several studies have explored the application of blockchain in enhancing security and data
integrity within IoT systems. Kumar et al. [7] investigated the secure storage of IoT data using a
combination of on-chain (Ethereum Blockchain) and off-chain (IPFS and Ethereum) storage,
addressing technical challenges in securely storing lIoT data. Chen et al. [8] proposed a
blockchain-based community safety and security system integrated with IoT devices, aiming to
enhance security through the decentralized nature of blockchain and the secure communication
capabilities of IoT devices. Chaganti et al. examined a cloud-based agricultural security
monitoring system that leverages Ethereum Blockchain to ensure the security of agricultural data
by integrating various components such as sensors, AWS cloud, and smart contracts.

The application of Ethereum Blockchain for data security in loT-based weather monitoring
systems holds significant potential. The integration of blockchain with IoT can enhance data
security, integrity, transparency, and trust across various applications, including IoT-based
weather monitoring systems. This research aims to design, develop, and investigate the
application of Ethereum Blockchain as a data security system within an loT-based weather
monitoring framework.

2. METHODS

This research propose the implementation of Ethereum Blockchain as a security system for
data storage in an loT-based weather monitoring system. Ethereum Blockchain has been widely
applied theoretically and it can be integrated into IoT systems through smart contracts validated
by the blockchain when loT devices operate. The weather monitoring system collects data from
sensors that measure environmental conditions, including temperature and humidity. In this study
Ethereum Blockchain is applied to ensure that the data obtained from weather monitoring sensors
is securely stored. The smart contract on Ethereum is designed with functions to fetch and store
sensor data. The use of hash algorithms ensures security and maintains public transparency by
recording transactions on the Ethereum network.

2.1. Software, Hardware, and Runtime Environment

IJEIS Vol. 14, No. 2, October 2024 : 209 — 220

LJEIS ISSN (print): 2088-3714, ISSN (online): 2460-7681 m 211

The implementation of the Ethereum Blockchain systems for IoT based weather monitoring
requires specific hardware such as laptop/pc, Raspberry Pi 4B, and DHT22 sensor.

The The software tools used in this research include:

a. Publisher MQTT (mgqtt_publisher.py): Program on Raspberry Pi 4B for collecting data
from the DHT22 sensor and publishing it to the broker.

b. Subscriber MQTT (mgqtt_subscriber.py): Program on a local computer that subscribes to
the MQTT broker and receives sensor data.

c. Smart Contract (iot.sol): A Solidity-based smart contract that stores sensor data on the
blockchain, manages read and write operations, and enforces conditions for transaction
execution.

d. Deploy Program (deploy.py): Used to deploy the smart contract on the Ethereum network.

e. Data Storage Program (store.py): Responsible for storing sensor data on the Ethereum
network by interacting with the smart contract.

f. Data Retrieval Program (retrieve.py): Fetches block data and transactions at specific
addresses on the Ethereum network.

g. Web Backend (app.py): Flask-based program acting as a server intermediary between the
web interface and the blockchain.

h. Web Interface (index.html): Template file used by app.py to display sensor data and data
hash values on the web interface.

The runtime environment for this research consists of simulated Ethereum Virtual Machine
that running on a local computer connected to the blockchain network, smart contract deployment
to implemented on the local Ethereum network, and sensor data collection and transmission using
MQTT and stored on the Ethereum network, with data displayed on a local host dashboard.

2.2. Weather Monitoring Design

The weather monitoring system is designed with components including the DHT22 sensor
and Raspberry Pi 4B. The Raspberry Pi 4B is connected to a monitor to display sensor data,
including temperature, humidity, and rainfall. Data collection is done using a Python program on
Raspberry Pi Debian, utilizing the integrated Wi-Fi module on the Raspberry Pi 4B. The design
of the IoT-based weather monitoring device is illustrated in Figure 1

ks ,';;;.\‘

Figure 1 Weather Monitoring Hardware Design

2.3. System Architecture Design

The implementation of Ethereum Blockchain is designed to secure data in the loT-based
weather monitoring system. The process starts with connecting the DHT22 sensor to Raspberry
Pi 4B to collect temperature and humidity data. This data is then sent to the MQTT broker with
IP 10.6.6.13 using the mqtt _publisher.py program. On the local computer, the MQTT subscriber
receives the data along with a timestamp. Ethereum network runs on the local machine, where the
Smart Contract is deployed using the deploy.py program. The sensor data is then stored on the

Ethereum Blockchain-Based Weather Data Storage Prototype (Eris Sulistiyani)

212 u ISSN (print): 2088-3714, ISSN (online): 2460-7681

Ethereum network in real-time using the store.py program, and the data, along with the transaction
hash, is displayed on a local web interface using the Flask-based app.py and index.html programs.
The overall system architecture is illustrated in Figure 2.

Monitor

(D] | marT
: Broker1066.13 |
i y

|
|
|
—— !
pHT22 Local computer/laptop l Local web
Raspberry Pi 4B | 127.00.1
MQTT Publisher
Sensor data I
(temperature & |
humidity) & timestamp
I Smart
| Contract
e e a
Figure 2 System Design
Raspberry Pi 4B Laptop/Local Computer
MQTT Broker » matt subscriber iot.sol
10.6.6.13 > matt_ Py deploy.py
A *
store.py
Sensor DHT22 » mqtt_publisher.py
\ 4
< » app.py
Smart Contract & | indeks. html
v v
retrieve local web
utd 127.0.0.1
Figure 3 Block Diagram

The entire process begins with mining on node 1, where the Smart Contract is deployed on
the Ethereum network. Data collected by the Raspberry Pi 4B from the DHT22 sensor is sent to
node 1 via MQTT, where it is stored using the store.py program. Node 1 validates the blockhash,
ensuring data security. The stored data is then retrieved and displayed on the local web interface.
All of the process is illustrated in Figure 3.

2.4. Ethereum Blockchain Development
The Ethereum Blockchain is implemented on a local network, following these steps:

a. Geth Installation: Go Ethereum (Geth) is used to run Ethereum nodes, mine, and manage
accounts. The version used is Geth 1.13.15-stable-c5ba367¢, supporting Proof of Authority
(PoA) consensus.

b. Account Creation: New Ethereum accounts are created using geth account new, with
specific nodes acting as validator and non-validator nodes.

IJEIS Vol. 14, No. 2, October 2024 : 209 — 220

1JEIS ISSN (print): 2088-3714, ISSN (online): 2460-7681 m 213

c. Genesis Block Initialization: The first block in the Ethereum Blockchain is initialized using
the genesis.json file with the geth init genesis.json command.

d. Node Deployment: Nodes are deployed using geth —networkid [network id] to identify the
private network used in this research.

e. Smart Contract Deployment: The smart contract, written in Solidity, is compiled and
deployed on the Ethereum network using ABI and BIN files.

2.5. Ethereum Network Configuration
To create the first block on the Ethereum private blockchain, we need to configure the
Genesis Block. The Genesis Block is initialized using the genesis.json file. In the alloc section,
initial ether balances are assigned to specific accounts. For Node 1 and Node 2, each account is
allocated 50,000 ETH. The extraData field is used to store specific network information or
identifiers, and in this Genesis file, the address of Node 1 is added as a validator node.
{
"config": {
"chainld": 5335,
"homesteadBlock": 0,
"eip150Block": 0,
"eip150Hash": 0,
"eip155Block": 0,
"eip158Block": 0,
"byzantiumBlock": 0,
"constantinopleBlock": 0,
"petersburgBlock": 0,
"istanbulBlock": 0,
"muirGlacierBlock": 0,
"berlinBlock": 0,
"londonBlock": 0,
"clique": {
"period": 5,
"epoch": 30000
}

b

"difficulty": "1",

"gasLimit": "9000000000",

"alloc": {

"0xd273F775d819136cfE8e85BeC3cde5309b67908C": {
"balance": "50000000000000000000000"

L

"0x3DB911686aD77068Dc5d7¢cB96eCD86Db5d934501": {
"balance": "50000000000000000000000"

}

b

"coinbase": "0x00",

"timestamp": "0x00",

"extraData":
"0x00d273F775d819
136cfE8e85BeC3cde5309b67908C000
0000000000000"

}

Ethereum Blockchain-Based Weather Data Storage Prototype (Eris Sulistiyani)

214 u ISSN (print): 2088-3714, ISSN (online): 2460-7681

The local Ethereum Blockchain network is run on a laptop's localhost. Node 1 and Node 2
are created on the localhost (127.0.0.1), with different ports assigned to each. Node 1 uses port
30304 for peer-to-peer communication, and Node 2 uses port 30305. For HTTP access, Node 1
uses HTTP port 8552, and Node 2 uses HTTP port 8554, which handle HTTP API requests from
Geth (Go Ethereum).

In the Ethereum network, an enode (Ethereum Node) serves as a URI (Uniform Resource
Identifier) to identify and connect with other nodes. The enode includes information such as the
public key, IP address, and port needed to communicate with other nodes in the Ethereum
network.

2.6. Smart Contract Implementation

After the Ethereum network is set up, the Smart Contract is developed using Solidity
(version 0.8.0). The contract ensures sensor data is stored securely and is immutable. The contract
code is provided below:

// SPDX-License-ldentifier: MIT
pragma solidity *0.8.0;

contract loTData {
struct Data {
uint256 timestamp;
string data;

}

Data[] public dataList;

function storeData(string memory _data) public {
dataList.push(Data(block.timestamp, _data));
}

function retrieveData(uint256 _index) public view returns (uint256, string memory) {
require(_index < dataList.length, "Index out of bounds");
Data storage data = dataList[_index];
return (data.timestamp, data.data);

}

function getDataCount() public view returns (uint256) {
return datalList.length;
}
}

After compilation, ABI and BIN files are generated for contract deployment. Smart contract
deployed in the Ethereum network and the sensors data can be stored in the Ethereum network as
transactions that stored within recipient as contract address. To deploy the Ethereum Blockchain
network, in this case will be create 2 nodes. The following commands is used to run nodel and
node2.

IJEIS Vol. 14, No. 2, October 2024 : 209 — 220

1JEIS ISSN (print): 2088-3714, ISSN (online): 2460-7681 m 215

geth --datadir node1 --syncmode "full" --port 30304 --http --http.addr "127.0.0.1" --http.port 8552 --

http.api "personal,eth,net,web3,txpool,miner,admin" --networkid 5335 --unlock
0xd273F775d819136cfE8e85BeC3cde5309b67908C --allow-insecure-unlock --password pwd.txt --
authrpc.port 8553 --ipcdisable --config config.toml --mine --miner.etherbase

0xd273F775d819136¢fE8e85BeC3cde5309b67908C

geth --datadir node2 --syncmode "full" --port 30305 --http --http.addr "127.0.0.1" --http.port 8554 --
http.api "personal,eth,net,web3,txpool,miner,admin" --networkid 5335 --allow-insecure-unlock --
authrpc.port 8555 --ipcdisable --config config.toml

2.7. Store and Retrieve Data

Once the subscriber receives the data, it is stored on the locally running Ethereum Blockchain
network using the ‘store.py’ program. This program logs the data, including date, time,
temperature, and humidity, as transactions on the Ethereum network, generating a unique
transaction hash. Web3 is used to facilitate this process. The stored data can later be retrieved
using the ‘retrieve.py’ program, which ensures transparency by displaying all stored data without
any modifications. The store.py" connects to Node 1, while ‘retrieve.py’ connects to Node 2.

3. RESULTS AND DISCUSSION

This study focuses on implementing an Ethereum network to store loT weather monitoring
data, specifically temperature and humidity readings.

3.1. Results of the Ethereum Blockchain Network Implementation

Once the command for Node 1 is executed, Node 1 starts the Ethereum network based on
the genesis file and the specific commands written for it. The implementation result for Node 1
is shown in Figure 4.

[07-31]|18:27:56.136] Starting peer—to-peer node =
Geth/v1.13.15-stable-c5ba367e/windows—-amd6l/gol.21.6
[07-31]18:27:56.221] New local node record =1,721
,634,763,767 =043aae321e492703 =127.0.0.1 =30304 =30304
[07-31]|18:27:56.223] Started P2P networking =enod
e://3903¥b9199c73d3836528ef6a0+bu9fel563411d2c9db857358U893U126e8UTeaTcbc0O9
£618b3budc331b680f7a7096bf35fab89a771e30509b679f99687e2ed@127.0.0.1:30304
[07-31]|18:27:56.228] IPC endpoint opened =\\.\p
ipe\geth.ipc
[07-31]18:27:56.229] Loaded JWT secret file =C:\U
sers\eriss\Geth\nodel\geth\jwtsecret =0xe9e3bbla
[07-31]|18:27:56.231] HTTP server started =
127.0.0.1:8552 =false = = =localhost
[07-31]|18:27:56.2uU5] WebSocket enabled =ws://
127.0.0.1:8553
[07-31]|18:27:56.245] HTTP server started
127.0.0.1:8553 =true = =localhost =localhost
[07-31]|18:27:56.2uU6] Stats daemon started
[07-31]18:27:57.0408] Unlocked account
xd273F775d819136cfE8e85BeC3cde5309b67908C
[07-31]18:27:57.042] Legacy pool tip threshold updated
[07-31]|18:27:57.042] Legacy pool tip threshold updated
,000,000
[07-31]18:27:57.044] Commit new sealing work
9y =ac525c..102804 =0 =0 =0 =1.772ms
[07-31]|18:27:57.047] Successfully sealed new block
oy =ac525c..102804 =dae59b. .7c8ebb =3.542ms

Figure 4 Ethereum network run on nodel

The node performs mining at 5-second intervals, as specified in the genesis.json file. Node
1 begins peer-to-peer communication by activating its enode and searching for connected peers.
If no peers are found, the peer count remains at 0. After Node 1 is running, Node 2 is then started

Ethereum Blockchain-Based Weather Data Storage Prototype (Eris Sulistiyani)

216 u ISSN (print): 2088-3714, ISSN (online): 2460-7681

with its specific command. The result of the Node 2 implementation is shown in Figure 6.2. Once
running, Node 2 starts peer-to-peer communication using its enode. If Node 1 and Node 2
successfully connect, Node 2 will immediately begin synchronizing blocks from the existing
Ethereum Blockchain network. If the blocks match the latest block in the network, Node 2 will

import new chain segments from Node 1.

[07-31|18:30:37.397] Started P2P networking =enod
e://a36c9217ae87aaldc2a277401282318be66a38191358da3cBBc726beffcddef88893e202
862dcc8125d2dact0ad59295ddbf076f1e368a7cc®6c93d8cPR183c0@127.0.0.1:30305

[07-31]|18:30:37.399] Loaded JWT secret file =C:\U
sers\eriss\Geth\node2\geth\jwtsecret =0xa75f9784

[07-31|18:30:37.401] HTTP server started
127.0.0.1:8554 =false = = =localhost

[07-31]|18:30:37.410] WebSocket enabled
127.0.0.1:8555

[07-31|18:30:37.410] HTTP server started
127.0.0.1:8555 =true = =localhost =localhost

[07-31|18:30:47.426] Block synchronisation started

[07-31|18:30:47.503] Imported new chain segment

=lebefa..Uc6395 =35 =0 =0.000 =69.597ms
= .4U4KiB =0.00B

[07-31|18:30:47.563] Looking for peers

=75 =2

[07-31|18:30:52.007] Imported new chain segment

=dd1522..c74030 =1 =0 =0.000
=327.4UKiB =0.00B

Figure 5 Ethereum network on node 2

The network operates on a local network with a chain ID of 5335, as configured in the
genesis file, and uses the Proof of Authority (PoA) consensus mechanism. This indicates that the
network is not running on the main Ethereum network or any other public Ethereum network.

3.2. Data Storage

The running Ethereum network is used to implement data storage from sensor readings
transmitted via MQTT. The storage program (store.py) is combined with a user interface program
(app.py), as shown in Figure 6.

Received message: 12 2024-87-31 18:35:54: Temperature: 22.7°C Humidit
y: 77.0%
Data stored: 12 2024-07-31 18:35:54: Temperature: 22.7°C Humidity: 77

.0% with transaction hash: @x14066f1b782aae5U1212578a921925d23da9d5e52
22fbb17u5dUc38966860e24

Figure 6 Data sensor stored

Data sent by the publisher from the Raspberry Pi and received by the subscriber on the
laptop is directly stored on the running Ethereum Blockchain network. Each piece of data sent is
stored on the blockchain as a transaction by Node 1. Data storage occurs whenever data is received
by the subscriber. An example of successful data storage on the Ethereum network is shown in
Figure 6.5. Each successful transaction stored at the contract address generates a transaction hash
and a "nonce" value, indicating the order of stored data in the blockchain. The hash value is
displayed on the web interface along with the data sent by the Raspberry Pi. If the Raspberry Pi
does not send any data, the Ethereum network will continue running without storing information,
resulting in no transactions by Node 1. The app.py program displays the most recently stored data
transaction on the network, as shown in Figure 7.

[07-31]18:37:50.821] Submitted transaction =0x0b
cc3de7+9fe7b1226345115ece5300d34711268e81019b370d082be2d1d766+ =0xd273F7

75d819136cfEBe85BeC3cde5309b67908C =1576 =0x11E6cff12C6dDE3954
56U305b8f2E2c2e75F37aB =0

Figure 7 Transaction on Ethereum Network from node 1

To read data stored on the blockchain, the retrieve.py program can be used, which reads
data from the Ethereum Blockchain as long as the network is running. The data retrieved includes
the first data stored on the blockchain up to the last data at the time the retrieve.py program is
executed. The result of the retrieve.py implementation is shown in Figure 8. The retrieve program

IJEIS Vol. 14, No. 2, October 2024 : 209 — 220

LJEIS ISSN (print): 2088-3714, ISSN (online): 2460-7681 m 217

reads all stored data from the start of the Ethereum Blockchain network, allowing any changes in

data to be visible and recorded.

2. Data retrieved: Timestamp: 2024-087-29 08:12:49, Data: Temperature: 23.3°C
Humidity: 76.5%

3. Data retrieved: Timestamp: 2024-087-29 08:12:59, Data: Temperature: 23.3°C
Humidity: 76.3%

Figure 8 Data retieved from node 2

The web interface is accessed through http://127.0.0.1:5000. The result of the web
implementation for the user interface, which is based on Flask and runs on localhost, is shown in
Figure 9.

| 2 ® BN Stasiun Pemantauan Cusca - o X
€ C @ @ 1270015000 CRE T I v I I B B .~ T L]
0
= Stasiun Pemantauan Cuaca
+ Pemantauan Suhu dan Kelembapan Udara

23 2024-07-31 18:37:50: Temperature: 22.4°C Humidity: 76.1%

terakhir di update: 7/31/2024, 18:37:51

Data Historis Terakhir

Timestamp

111:37:32

2024-07-31 11:37°42

Figure 9 User interface

When the Ethereum network is running and sensor data is sent, the data is displayed on the
web interface as shown in Figure 9. The displayed data includes the timestamp of data sent from
the Raspberry Pi, the sensor readings, the transaction hash of the data storage on the Ethereum
Blockchain, the last updated timestamp, and additional data already stored on the network. The
displayed data is updated every second. The data sent by the publisher, received by the subscriber,
and retrieved data is stored in a CSV file as a backup, updated every minute.

3.3. Network Latency

During the data storage process, which begins with data transmission by the publisher,
reception by the subscriber, and storage on the blockchain until the data is retrieved, there is a
time delay in each process. To measure network latency, tests were conducted by varying the data
transmission interval from the Raspberry Pi. The test was performed with transmission intervals
of 0, 5, 10, 15, 20 and 30 seconds, using 20 batch sensor readings. To ensure any delays in the
data storage process on the Ethereum Blockchain, tests were also conducted on the Ethereum
network with different mining periods, specifically 5 seconds and 10 seconds.

Figure 10 and Figure 11 showed the most stable delay observed during the data
transmission process without any data loss. This stability is achieved by carefully optimizing the
interval between data transmission from the publisher and the mining period within the Ethereum
Blockchain network. The graph shows that when the transmission interval is synchronized with
the blockchain's mining period, data is consistently stored without loss, and the delay remains
within an acceptable range. This result underscores the importance of aligning data transmission

Ethereum Blockchain-Based Weather Data Storage Prototype (Eris Sulistiyani)

218

m ISSN (print): 2088-3714, ISSN (online): 2460-7681

intervals with the blockchain's processing capabilities to ensure data integrity and real-time
synchronization.

Data Processing Each Batch Data Recording

Figure 10 Latency for 5 seconds mining period within 10 seconds data transmission

Data Processing Each Batch Data Recording

30 12
25 0
e | £
v 10 - 4
5 2
0 0
1] 2 3 4 5 6 7 8 1 2 i 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Batc Batch

9 10 11 12 13 14 15 16 17 18 19
F

e Publisher e Subscriber essssStore —essRetrieve e Publisher to Subscriber e Subscribe to Retri

Figure 11 Latency for 10 seconds mining period within 20 seconds data transmission

The results indicate that when the data transmission interval exceeds the mining period, all

transmitted data is successfully stored in the blockchain. However, the delay in storing data varies
depending on the transmission interval. This study tested mining periods of 5 and 10 seconds,
revealing several key points regarding real-time data transmission and transaction recording:

1.

Publisher-Subscriber Delay: There is a consistent delay of about 1 second between the
publisher and subscriber. This delay does not significantly impact data storage in the
Ethereum Blockchain when using a 5-second mining period. The subscriber has
approximately 4 seconds to process and prepare the data for storage. In contrast, with a 10-
second mining period, data transmission from the publisher to the subscriber occurs without
noticeable delay, and only occasionally experiences a 1-second lag.

Subscriber-to-Storage Delay: With a 5-second mining period, the delay from the subscriber
to data storage varies between 2 to 6 seconds. For the 10-second mining period, this delay
ranges from 3 to 12 seconds. This variability is crucial as it sometimes exceeds the mining
period. When this happens, the transaction cannot be included in the current block and must
wait for the next one. Such delays can lead to inconsistencies in blockchain data recording,
potentially affecting the real-time nature of the system. Delays that exceed the mining
period can cause significant temporal lags in data availability on the blockchain.

Overall Process Delay: The total delay from the publisher to data storage ranges from 3 to
7 seconds for the 5-second mining period. While most data can be processed within the 5-
second window, some transactions may still experience delays. Similarly, for the 10-second
mining period, the total process delay ranges from 3 to 12 seconds. This delay could lead
to scenarios where data is not immediately synchronized on the blockchain, which is critical
for applications requiring up-to-date information.

The overall delay in the data flow, especially from the subscriber to data storage, directly

impacts the efficiency and timeliness of transaction recording on the blockchain. Minimizing this

IJEIS Vol. 14, No. 2, October 2024 : 209 — 220

1JEIS ISSN (print): 2088-3714, ISSN (online): 2460-7681 m 209

delay is crucial to ensure that transactions consistently meet the mining period, thus maintaining
the integrity and real-time nature of data processing.

Implementing a blockchain-based data storage system for weather monitoring presents
both opportunities and challenges. Managing data from approximately 200 weather stations in
Indonesia requires careful consideration of latency, transaction costs, and data management
strategies. The main challenge is ensuring timely data availability and optimizing the system to
handle large data volumes efficiently. Given that real-time data is typically transmitted to the
BMKG server every 10 minutes, this interval provides sufficient time for data collection and
storage before being added to the blockchain. Efficient data storage mechanisms could involve
storing only metadata and recorded hashes in the blockchain. Additionally, transaction costs or
gas fees on the Ethereum Blockchain must be considered. Reducing gas fees can be achieved by
minimizing the total number of required transactions and combining data from multiple stations
into a single transaction.

4. CONCLUSION

This research implemented an Ethereum Blockchain with a Proof of Authority consensus
to ensure the integrity and transparency of loT data from weather monitoring stations, transmitted
via the MQTT protocol at intervals of 0, 5, 10, 15, and 20 seconds with mining periods of 5 and
10 seconds. The findings indicate that the maximum delay in data transmission from the publisher
to the subscriber was consistently around 1 second. The delay in storing data on the Ethereum
Blockchain from the subscriber showed greater variability, ranging from 2 to 6 seconds for a 5-
second mining period and 3 to 12 seconds for a 10-second mining period.

The study also revealed that a 5-second mining period with transmission intervals of 0 and
5 seconds resulted in different storage delays compared to intervals of 10, 15, and 20 seconds,
which had similar variability. Similarly, for a 10-second mining period, data storage delays
stabilized with similar variability when the transmission intervals were 15, 20, and 30 seconds.
The delay in data storage is closely related to the mining period applied on the Ethereum
Blockchain network, impacting the completeness and timing of data storage from IoT devices. To
avoid incomplete data storage, it is recommended to set a mining period slower than the data
transmission interval from IoT devices, allowing for more synchronized data transmission and
storage, leading to more accurate and complete data on the blockchain.

5. FUTURE WORKS

Future research should consider developing the Ethereum Blockchain network on a public
network to expand its applicability to broader systems. Additionally, it would be beneficial to
conduct studies involving larger data volumes or more varied IoT devices to assess the
performance of the Ethereum Blockchain network in storing data on a larger scale.

REFERENCES

[1] K. S. Shashidhara, S. Pradeep Kumar, V. B. Ganjihal, S. S. Phatate, S. S. Shetty, and R.
Vinay, “loT Enabled Weather Monitoring System,” in 2022 IEEE North Karnataka
Subsection Flagship International Conference, NKCon 2022, Institute of Electrical and
Electronics Engineers Inc., 2022. doi: 10.1109/NKCon56289.2022.10126649.

[2] A. S. Bin Shahadat, S. I. Ayon, and M. R. Khatun, “Efficient [oT based Weather Station,”
in Proceedings of 2020 IEEE International Women in Engineering (WIE) Conference on
Electrical and Computer Engineering, WIECON-ECE 2020, Institute of Electrical and

Ethereum Blockchain-Based Weather Data Storage Prototype (Eris Sulistiyani)

220

m ISSN (print): 2088-3714, ISSN (online): 2460-7681

(3]

(3]

(6]

(7]

(8]

Electronics Engineers Inc., Dec. 2020, pp. 227-230. doi: 10.1109/WIECON-
ECES52138.2020.9398041.

R. K. Kodali and S. Mandal, “IoT Based Weather Station,” 2016 International Conference
on Control, Instrumentation, Communication and Computational Technologies, pp. 680—
683, 2016.

S. R. Alam, S. Jain, and R. Doriya, “Security threats and solutions to IoT using
Blockchain: A Review,” in Proceedings - 5th International Conference on Intelligent
Computing and Control Systems, ICICCS 2021, Institute of Electrical and Electronics
Engineers Inc., May 2021, pp. 268-273. doi: 10.1109/ICICCS51141.2021.9432325.

H. Wang and J. Zhang, “Blockchain Based Data Integrity Verification for Large-Scale [oT
Data,” IEEE Access, vol. 7, pp- 164996—-165006, 2019, doi:
10.1109/ACCESS.2019.2952635.

M. B. Mollah et al., “Blockchain for Future Smart Grid: A Comprehensive Survey,” Jan.
01, 2021, Institute of Electrical and Electronics Engineers Inc. doi:
10.1109/J10T.2020.2993601.

V. Kumar, C. Ramesh, and " Storing, “Storing IOT Data Securely in a Private Ethereum
Blockchain Storing IOT Data Securely in a Private Ethereum Blockchain Repository
Citation Repository Citation,” 2019, doi: 10.34917/15778410.

C. L. Chen, Z. Y. Lim, and H. C. Liao, “Blockchain-based community safety security
system with iot secure devices,” Sustainability (Switzerland), vol. 13, no. 24, Dec. 2021,
doi: 10.3390/su132413994.

IJEIS Vol. 14, No. 2, October 2024 : 209 — 220

