Stunting Classification Model For Toddlers Using SMOTE and Support Vector Machine (SVM) (Case Study: Samalanga Community Health Center)
mahdi mahdi(1), Rahmad Hidayat(2*), Mazaia Ulfa(3)
(1) Politeknik Negeri Lhokseumawe
(2) Politeknik Negeri Lhokseumawe
(3) Politeknik Negeri Lhokseumawe
(*) Corresponding Author
Abstract
Stunting is a growth disorder that has long-term impacts on child development. This study aims to develop a classification model for determining stunting status in toddlers using the Support Vector Machine (SVM) algorithm, with a case study conducted at the Samalanga Community Health Center. The dataset used consists of 1,205 toddlers. The research stages include preprocessing, data balancing using SMOTE, and parameter tuning using GridSearchCV. The developed model successfully achieved an accuracy of 0.97, an ROC-AUC of 0.96, and an average f1-score of 0.97. These results indicate that the model can accurately distinguish between stunted and non-stunted toddlers. Benchmarking against public datasets shows that the model in this study has a 2% higher accuracy and a 4.7% higher ROC-AUC value compared to previous studies. These findings indicate that the applied pipeline approach is effective in improving classification accuracy. The resulting model has the potential to support fast and accurate stunting classification.
Keywords
Full Text:
PDFReferences
H. Hen Lukmana, M. Al-Husaini, I. Hoeronis, and L. Desi Puspareni, “Pengembangan Sistem Informasi Deteksi Dini Stunting Berbasis Sistem Pakar Menggunakan Metode Forward Chaining”.
Eka Oktavia, Yulia Vanda Editia, and Mahardika Primadani, “Faktor- Faktor Yang Mempengaruhi Kejadian Stunting Pada Balita Di Indonesia Tahun 2024,” Jurnal Ventilator, vol. 2, no. 1, pp. 158–168, Mar. 2024, doi: 10.59680/ventilator.v2i1.988.
I. C. A. Soleha and R. Riya, “Faktor – Faktor yang berhubungan dengan Kejadian Stunting pada Balita: Literature Review,” Jurnal Akademika Baiturrahim Jambi, vol. 13, no. 1, pp. 158–167, Mar. 2024, doi: 10.36565/jab.v13i1.821.
Kementerian Kesehatan Republik Indonesia, “Laporan Hasil Survei Status Gizi Indonesia (SSGI) Tahun 2022.” Accessed: Jul. 09, 2025. [Online]. Available: https://stunting.go.id/buku-saku-hasil-survei-status-gizi-indonesia-ssgi-2022/
H. Tohari, S. Harini, M. A. Yaqin, I. B. Santoso, and C. Crysdian, “Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Produktivitas Padi,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 1, pp. 175–183, Nov. 2023, doi: 10.47065/josyc.v5i1.4538.
S. D. Wahyuni and R. H. Kusumodestoni, “Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting,” Bull. Inf. Technol., vol. 5, no. 2, pp. 56–64, 2024, doi: 10.47065/bit.v5i2.1247.
K. Ujaran, K. Ridwan, E. Heni Hermaliani, M. Ernawati, and C. Author, “Penerapan Metode SMOTE Untuk Mengatasi Imbalanced Data Pada,” 2024. [Online]. Available: http://jurnal.bsi.ac.id/index.php/co-science
I. S. Aisah, B. Irawan, and T. Suprapti, “Algoritma Support Vector Machine (SVM) Untuk Analisis Sentimen Ulasan Aplikasi Al Qur’an Digital,” 2023.
Mariette Awad and Rahul Khanna, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. New York, 2015.
S. S. T. E. A. R. A. N. Ade Silvia Handayani, “Klasifikasi Kualitas Udara dengan Metode Support Vector Machine,” JIRE (Jurnal Informatika & Rekayasa Elektronika), vol. 3, no. 2, pp. 187–199, Nov. 2020, Accessed: Jul. 07, 2025. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jire
I. H. H. Y. A. S. I. M. C. M. U. I. R. Anita Desiani, “Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris,” IJAI (Indonesian Journal of Applied Informatics), vol. 7, no. 1, p. 12, Nov. 2022.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1






